陈景润定理数学证明存在错误吗?
(2019-02-08 15:43:11)
陈景润定理数学证明存在错误吗?
1973年,陈景润定理证明论文审稿人王元先生在稿件审查意见栏目里面写了“证明无误”
字样,据此,陈景润的1+2论文得以正式发表。。
三十年之后,反动文人王晓明想“整死”陈景润。要是在陈景润定理证明中发现了错误,那么。反动文人王晓明就要“翻天”
了。
2007年,美国知名数学家Jie Wu发表学术论文,重新证明了陈景润定理,发现“证明无误”.
本文附件是Jie
Wu论文的全文,白纸黑字,可供读者参阅。
袁萌 陈启清
2月7日
附件:陈景润定理最新第三方证明如下(英文原文)
Chen’s double sieve, Goldbach’s conjecture and the twin prime problem
By Jie Wu(1925- )
To cite this version: Jie Wu. Chen’s double sieve, Goldbach’s conjecture and the twin prime problem. Acta Arithmetica, Instytut Matematyczny PAN, 2004, 114 (no. 3), pp.215–273.
hal-00145781, version 1 - 11 May 2007
Acta Arithmetica 114 (2004), 215–273
Chen’s double sieve,
Goldbach’s conjecture and the twin prime problem
By Jie Wu
Abstrac(摘要). For every even integer N, denote by D(N) and D1,2(N) the number of representations of N as a sum of two primes and as a sum of a prime and an integer having at most two prime factors, respectively. In this paper, we give a new upper bound for D(N) and a new lower bound for D1,2(N), which improve the corresponding results of Chen. We also obtain similar results for the twin prime problem
Contents
§ 1. Introduction ........ 1
§ 2. Preliminary lemmas ........ 5
§ 3. Chen’s double sieve ..... 9
§ 4. Weighted inequalities for sieve function ............. 15
§ 5. Functional inequalities between H and h ............. 22
§ 6. Proofs of Propositions ...... 28
§ 7. Proof of Theorem 1......... 30
§ 8. Proof of Theorem 3 ..............32 § 9. Chen’s system of weights . 33
§ 10. Proofs of Theorems 2 and 5 ............
38
§ 11. Proof of Theorem 4 ............ 42 References .......... 47
§ 1. Introduction
(全文见“无穷小微积分”网站)
字样,据此,陈景润的1+2论文得以正式发表。。
了。
袁萌
附件:陈景润定理最新第三方证明如下(英文原文)
Chen’s double sieve, Goldbach’s conjecture and the twin prime problem
By Jie Wu(1925-
To cite this version: Jie Wu. Chen’s double sieve, Goldbach’s conjecture and the twin prime problem. Acta Arithmetica, Instytut Matematyczny PAN, 2004, 114 (no. 3), pp.215–273.
hal-00145781, version 1 - 11 May 2007
Acta Arithmetica 114 (2004), 215–273
Chen’s double sieve,
Goldbach’s conjecture and the twin prime problem
By Jie Wu
Abstrac(摘要). For every even integer N, denote by D(N) and D1,2(N) the number of representations of N as a sum of two primes and as a sum of a prime and an integer having at most two prime factors, respectively. In this paper, we give a new upper bound for D(N) and a new lower bound for D1,2(N), which improve the corresponding results of Chen. We also obtain similar results for the twin prime problem
Contents
§ 1. Introduction ........ 1
§ 2. Preliminary lemmas ........ 5
§ 3. Chen’s double sieve ..... 9
§ 4. Weighted inequalities for sieve function ............. 15
§ 5. Functional inequalities between H and h ............. 22
§ 6. Proofs of Propositions ...... 28
§ 7. Proof of Theorem 1......... 30
§ 8. Proof of Theorem 3 ..............32 § 9. Chen’s system of weights . 33
§ 11. Proof of Theorem 4 ............ 42 References .......... 47
§ 1. Introduction
(全文见“无穷小微积分”网站)
前一篇:反动文人王晓明是数学大白痴
后一篇:陈景润4篇代表性数学论文