陈景润定理之数学美
(2019-01-26 16:32:54)陈景润定理之数学美
大家知道,只要找到一个“反例”,哥德巴赫猜想就不成立。
1938年,Nils Pipping费了九牛二虎之力,检查了105个偶数也没有找出一个“反例”。
到了上世纪70年代,有人使用分布式计算机,检查到4x1019个偶数,也找不出哥德巴赫的“反例”。反例找不到,哥德巴赫猜想未必成立。
进入本世纪,2013年,借助大型计算机,检了查了3,325,581,707,333,960,528 个偶数还是找不到哥德巴赫猜想的反例。
不管检查了多少偶数,哥德巴赫猜想的反例总是可能存在的。对此,陈景润定理证明了一个事实:对于充分大的偶数,哥德巴赫猜想的反例几乎是不存在的,定理陈述简单明了,非常之美。请看本文附件1。
袁萌
附件1:
Chen Jingrun showed in 1973 using the methods of sieve theory that every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime (the product of two primes).[23] See Chen's theorem for further information.
附件2:For small values of n, the strong Goldbach conjecture (and hence the weak Goldbach conjecture) can be verified directly. For instance, Nils Pipping in 1938 laboriously verified the conjecture up to n ≤ 105.[11] With the advent of computers, many more values of n have been checked; T. Oliveira e Silva is running a distributed computer search that has verified the conjecture for n ≤ 4 × 1018 (and double-checked up to 4 × 1017) as of 2013. One record from this
search is that 3,325,581,707,333,960,528
is the smallest number that has no Goldbach partition with a prime below 9781