预告:无穷小微积分改版,寻找接班人
(2018-12-29 10:50:15)预告:无穷小微积分改版,寻找接班人
 
 
袁萌 
附件:超实微积分原文
Hyperreal Calculus MAT2000 –– Project in Mathematics
Arne Tobias Malkenes Ødegaard Supervisor: Nikolai Bjørnestøl Hansen
Abstract This
project deals with doing calculus not by using epsilons and deltas,
but by using a number system called the hyperreal numbers. The
hyperreal numbers is an extension of the normal real numbers with
both innitely small and innitely large numbers added. We will
rst show how this systemcanbecreated,and
thenshowsomebasicpropert
Contents
1 Construction of the hyperreal numbers 3
1.1 Intuitive construction . 3
1.2 Ultralters . . . . . . . . . . . 3
1.3 Formal construction . . . . . . . . . . . . . . . . 4
1.4 Innitely small and large numbers . . . . . . . 5
1.5 Enlarging sets . . . . . . . . . . 5
1.6 Extending functions . . .. . . . . 6
2 The transfer principle 6
2.1 Stating the transfer principle . . . . . . . 6
2.2 Using the
transfer principle . . . . . 
3 Properties of the hyperreals 8
3.1 Terminology and notation . .. . 8
3.2 Arithmetic of
hyperreals . . 
3.3 Halos . . . . . . . . . . . . . . . . . 9
3.4 Shadows . . .
. 
4 Convergence 11
4.1 Convergence in hyperreal calculus. . . . .. . . . 11
4.2 Monotone convergence . . . 12
5 Continuity 13
5.1 Continuity in hyperreal calculus . . . . . . . . . . . . 13
5.2 Examples . . .
. . . 
5.3 Theorems about
continuity. 
5.4 Uniform continuity . . ... 16
6 Limits and derivatives 17
6.1 Limits in hyperreal calculus . .17
6.2 Dierentiation in hyperreal calculus . . . . . . .. . 18
6.3 Examples . . . . . . . . . . 18
6.4 Increments . .
. . . 
6.5 Theorems about derivatives . 19
(全文见“无穷小微积分”网站)

 加载中…
加载中…