加载中…
个人资料
北大袁萌
北大袁萌 新浪个人认证
  • 博客等级:
  • 博客积分:0
  • 博客访问:41,825
  • 关注人气:10,635
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

超实数*R真的存在吗?

(2018-05-15 02:49:41)

超实数*R真的存在吗?

在国内互联网上,超实数*R与读者相互“沟通”已经5年有余,客观形成与菲氏微积分的“相互对持”的局面。

现代无穷小学派具有布尔巴基学术风格,实实在在,坚持数学真理。

袁萌  515

附:

超实数*R真的存在吗?(此文发表于2012-12-19

对于无穷小微积分而言,超实数*R的重要性是无须质疑的。比如:无穷小ε与δ,无穷大HK,它们在无穷小微积分里面的作用是不可或缺的。但是,这些“理想数”是否真的存在?有人是持有怀疑态度的。

针对这种情况,J. Keisler2000年特意为“初等微积分”(Elementary Calculus)电子版写了一本可自由下载的电子参考资料,叫做“无穷小微积分基础”(Foundations of Infimitesimal Calculus),深入地回答了有关问题。这是一本值得研读的电子书。

该书的要点是:给出超实数系*R的公理系统,然后在第2331页利用所谓“超幂”(Ultrapower)直接构造出超实数*R系统,与构造实数系R一样,叫人无话可说。在此,我只想对好奇的读者指出这一事实,而不想陷入这8页的数学论证,显示无穷小的高贵身份。不过,我想提醒读者注意:这里面的布尔巴基风格。

归结为一句话:超实数*R存在的真实性与实数R的存在性是一样的,白纸黑字,写的一清二楚,无可非议。问题在于:这种含有无穷小与无穷大的“线段”似乎为欧几里德几何学所不容。直线上有许多“空隙”,但是,又能够相交于一点,显得怪怪的,不可思议。但是,这些奇怪现象都阻止不了莱布尼兹追随者的前进步伐。数学家的天性是服从“逻辑真理”。

此刻,国内的《高等数学》教材已经拿在我手中,我的心情很矛盾。是说,还是不说?我怕有人说我不自量力,对“国家级规划教材”持有不恭态度。左思右想,......仍然有点儿“举棋不定”。只好明日再说。

此刻,我想的问题是:我的读者是些什么人?我想,大部分应该是学生。但是,也有个别数学“高手”。在互联网上普及数学,不同于课堂讲课,讲课的对象是完全确定的。讲深了不行,讲浅了也不行,有点犯难。我真心希望看到大家的“意见反馈”,不管对与不对,我都愿意认真考虑。

在该教学参考书的前言中,J. Keisler有句话如下:

......Since then generations of students have been taught that infinitesimals do not exist and should be  avoided”,意思是,自那时以后,几代大学生被告知(教导):无穷小是不存在的,应该尽力避开。实际上,我国《高等数学》的老师们目前所做的宏伟事业正是这样的。对此,我个人很是无奈。

在数学中引入无穷小的征途上,我们都是莱布尼兹的后来人。现把莱布尼兹的肖像放在下面:

(原文图片在此省略)

用以表示对他的钻研探索精神的真挚的尊敬!(全文完)

袁萌   20121219

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有