关于连续函数的介值定理
(2013-08-07 06:40:13)
标签:
it |
8月6日,J. Keisler《基础微积分》第3.8节连续函数的性质(袖珍电子书)已经上传互联网,使国内读者开阔了眼界,知道无穷小微积分学的”不同风味“在连续函数研究领域的具体表现。
大家知道,在传统微积分学里面,有一个关于连续函数的”零点定理“,也叫做”介值定理“。这是一条微积分学的基本定理,非常重要,不可轻视。该定理的陈述如下:
INTERMEDIATE VALUE THEOREM
Suppose the real function f is continuous on the closed interval [a,b] and f(x) is positive at one endpoint and negative at the other endpoint. Then f has a zero in the interval (a,b) ; that is, f(c) = 0 for some real c in (a,b).
这个定理的结论看起来非常显然,似乎无需给出严格的”数学证明“。我们现代文明人不能局限于”直观性“(拍脑袋),把数学当成”魔术“、变戏法,看热闹。根据维基网站:”This theorem was first proved by Bernard Bolzano(波尔查诺) in 1817. Augustin-Louis Cauchy(哥西) provided a proof in 1821“,值得注意的是,哥西使用的证明思路就是无穷小方法。
Let a+Kδbe the last partition point at which f(a+Kδ)< 0. Thus
Since fis continuous, f(a+Kδ)is infinitely close to f(a+(K+1)δ). We conclude that f(a+ Kδ)≈ 0 (Figure3.8.7). We take cto be the standard part of a+ Kδ, so that