今年3月16日,在“袖珍电子书:关于微积分学的公理化”一文中,我们首次接触到现代微积分学的公理化问题,当时有些话没有说透,今天再议。
在袖珍电子书“基础微积分后记(Epilogue)”里面,J.
Keisler教授说:“All the familiar facts
about the real numbers can be proved using only these
axioms”,意思是说,所有熟知的有关实数(包括传统微积分学)的事实(定理)都可以
从以下三组公理导出:
1. ALGEBRAIC AXIOMS FOR THE
REAL NUMBERS
A Closure laws 0and1are real numbers. If a and b are real
numbers, then so are a + b, ab and -a. If a is a real number and
a≠0, then1/a is a real
number.
B
Commutative
laws
a+b = b+a
ab = ba
C
Associative
laws
a+(b+c) = (a+b) + c a(bc) =
(ab)c.
D Identity
laws
0+ a =
a 1·a
= a .
E
Inverse laws
a + (-a)=0 if
a≠0,
a(1/a)=1
F
Distributive
law
a·(b + c) = ab + ac
DEFINITION
The positive
integersare the real numbers 1,2 = 1+1, 3 = 1+1+1
,4=1+1+1+1 , and so
on.
II. ORDER AXIOMS FOR REAL
NUMBERS
A
0<1.
B
Transitive law if a< b and b<
c.
C
Trichotomy law Exactly one of the relations ab
holds.
D Sum
law If a< b , then a+c <
b+c.
E product
law If a <
b and 0 < c, then ac < bc
.
F
Root axiom For every real
number a > 0 and every positive integer n, there is a real
number b > 0 such that b的n次方= a
Ⅲ. COMPLETENESS
AXIOM
Let A be a set of real numbers such that
whenever x and y are in A, any real number between x and y is in A.
Then A is an interval.
从上述三组公理(I、II、III)出发,我们可以建立起实数系R的数学大厦(即定理系统,其中包括微积分学的定理体系)。满足这套公理体系的数学模型都是“同构”的。实际上,函数、极限、导数、微分与积分等都是一些数学定义(概念)而已。有了这种眼光,看待微积分学的角度就不同了,微积分如同平面几何、高学代数。但是,无穷小不在这套体系之中(无穷小没有容身之地)。那么,我们该怎么办呢?且听下回分解。
加载中,请稍候......