加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

第6.2节  旋转体的体积

(2013-07-19 20:17:42)
标签:

it

6.2   VOLUMES  OF  SOLIDS  OF  REVOLUTION

Integrals are used in this section to find the volume of a solid of revolution. A solid of revolution is generated by taking a region in the first quadrant of the plane and rotating it in space about the x - or y-axis (Figure 6.2.1).

 

第6.2节 <wbr> <wbr>旋转体的体积

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

Figure  6.2.1  Solids of Revolution

 

We shall work with the region under a curve and the region between two curves. We use one method for rotating about the axis of the independent variable and another for rotating about the axis of the dependent variable.

 

For areas our starting point was the formula

                           area = base × height

 

for the area of a rectangle. For volumes of a solid of revolution our starting point is the usual formula for the volume of a right circular cylinder (Figure 6.2.2)

 

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

Figure 6.2.2

 

DEFINITION

The volume of a right circular cylinder with height h and base of radius r is

                        = π h.

 

DISC METHOD :  For rotations about the axis of the independent variable.

 

Let us first consider the region under a curve. Let R be the region under a curve y= f(x)from x=a to x = b, shown in figure 6.2.3(a). x is the independent

 

第6.2节 <wbr> <wbr>旋转体的体积

 

 

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

 

Figure 6.2.3

 

Variable in this case. To keep Rin the first quadrant we assume 0 ab and 0 f(x). Rotate R about the x-axis, generating the solid of revolution Sshown in Figure 6.2.3(b).

 

This volume is given by the formula below.

 

VOLUME  BY  DISC  METHOD   V= ______π(f(x)²dx.

 

To justify this formula we slice the region Rinto vertical strips of infinitesimal width  Δx. This slices the solid S into discs of infinitesimal thickness Δx. Each disc is almost a cylinder of height Δxwhose base is a circle of radius f(x)(Figure 6.2.4). Therefore

                            ΔV=_______π(f(x))²Δx.

 

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.4  Disc Method

 

EXAMPLE 1 Find the volume of a right circular cone with height h and base of radius r .

         It is convenient to center the cone on the x-axis with its vertex at the origin as shown in Figure 6.2.5. This cone is the solid generated by rotating about the x- axis the triangular region R under the line y= (r/h) x, 0xh.

 

 

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.5

Since x is the independent variable we use the Disc Method. The volume formula gives

 

 

 

 

Or

 

 

 

Now we consider the region R between two curves y= f(x) and y= g(x) from x=a to x=b. Rotating R about the x-axis generates a solid of revolution S shown in Figure 6.2.6(c).

 

第6.2节 <wbr> <wbr>旋转体的体积第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

第6.2节 <wbr> <wbr>旋转体的体积第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

 

第6.2节 <wbr> <wbr>旋转体的体积第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.6

 

Let R1 be the region under the curve y= f(x) shown in Figure 6.2.6(b) , and R2, the region under the curve y= g(x), shown in Figure 6.2.6(a). Then S can be found by removing the solid of revolution S1 generated by R1 from the solid of revolution S2 generated by R2. Therefore

 

                       Volume of S = volume of S2 - volume of S1.

 

 

 

 

 

 

This justifies the formula

 

 

 

 

We combine this into a single integral.

VOLUME BY DISC METHOD     V = _____ π[(g(π))² - (f(x))²] dx.

 

Another way to see this formula is to divide the solid into annular discs (washers) with inner radius f(x)and outer radius g(x), as illustrated in Figure 6.2.7.

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.7

EXAMPLE  2 The region Rbetween the curves y=2-x²and y=x²is rotated about the x-axis

               generating a solid S. Find the volume of S.

               The curves y=2-x²and y=x²cross at x=___ 1. The region is sketched in

               Figure 6.2.8. The volume is

 

 

 

 

第6.2节 <wbr> <wbr>旋转体的体积第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

 Figure 6.2.8

Warning : When using the disc method for a region between two curves, the correct formula is

 

 

 

or

 

 

 

A common mistake is to subtract f(x)from g(x) before squaring.

            Wrong:       V= ____ π(g(x) - f(x))² dx.

            Wrong:(for Example 2):

 

                         V = ____ π(2-x²) - x²)-x²)²dx =_____π(2 - 2x²)² dx.

                       =_______ π(4-8x² +4 x4)dx = 64π / 15.

 

 

CYLINDRICAL  SHELL  METHOD:

For rotations about the axis of the dependent variable.

Let us again consider the region R under a curve y=f(x)from x= a to x=b, so that x is still the

independent variable. This time rotate Rabout the y-axis to generate a solid of revolution S

(Figure 6.2.9).

 

VOLUME  BY  CYLINDRICAL  SHELL  METHOD    V= ____ 2πx f (x) dx.

 

Let us justify this formula. Divide Rinto vertical strips of infinitesimal width Δxas shown in Figure 6.2.10. When a vertical strip is rotated about the y-axis it generates a cylindrical shell of thickness Δxand volume ΔV. This cylindrical shell is the difference between an outer cylinder of radius x+Δx and an inner cylinder of radius Δx. Both cylinders have height infinitely close to f(x). Thus compared to Δx,

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

         

 

 

 

 

 

 

 

          

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

            ΔVouter cylinder - inner cylinder

            π(x + Δx)² f(x) - πx² f(x)

             π(x² + 2xΔx +(Δx)² -x²) f(x)

             π(2xΔx +(Δx)² f(x)π 2xΔx f(x),

 

Whence    ΔV x f(x)Δx,       (compared to Δx).

 

By the Infinite Sum Theorem,

                        V=______ x f(x)dx.

 

EXAMPLE   The region R between the line y= 0 and the curve y= 2x - x²is

      rotated about the y-axis to form a solid of revolution S. Find the volume of S.

      We use the cylindrical shell method because yis the dependent variable. We

      see that the curve crosses the x-axis x=0 and x=2, and sketch the region in

 

      Figure 6.2.11. The volume is

 

 

 

 

第6.2节 <wbr> <wbr>旋转体的体积 

 

 

 

 

 

 

 

 

Figure 6.2.11

 

Now let R be the region between the curves y=f(x)and y= g(x) for axb, and generate the solid S by rotating R about the y=axis. The volume of S can be found by subtracting the volume of the solid S1 generated by the region under y= f(x) from the volume of the solid S2 generated by the region under y=g(x) ( Figure 6.2.12). The formula for the volume is

                 V= S2 - S1 = ____ 2πxg(x)dx - _____ x f(x) dx.

 

Combining into one integral, we get

 

VOLUME BY CYLINDRICAL SHELL METHOD    V = ___ 2πx (g(x) -f(x)) dx.

 

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

 

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

第6.2节 <wbr> <wbr>旋转体的体积  

 

 

第6.2节 <wbr> <wbr>旋转体的体积

EXAMPLE 4  The region between the curves y=x and y=___ is rotated about the y-axis.

             Find the volume of the solid of revolution.

             We make a sketch in Figure 6.2.13 and find that the curves cross at x=0 and

             x=1. We take x for the independent variable and use the Cylindrical Shell

             Method.

 

 

 

 

Some regions R are more easily described by taking yas the independent variable, so that Ris the region between x=f(y) and x=g(y) for cyd.The volumes of the solids of revolution are then computed by integrating with respect to y. Often we have a choice of either x or y as the independent variable.

 

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

 

 

 

How can one decide whether to use the Disc or Cylindrical Shell Method? The answer depends on both the axis of rotation and the choice of independent variable. Use the Disc Method when rotating about the axis of the independent variable. Use the Cylindrical Shell Method when rotating about the axis of the dependent variable.

 

EXAMPLE 5   Derive the formula V= ___ πr3 for the volume of a sphere by both the Disc

              Method and the Cylindrical Shell Method.

              The circle of radius r and center at the origin has the equation.

                   + y² = r²

 

The region R inside this circle in the first quadrant will generate a hemisphere of radius r when it is rotated about the x-axis( Figure 6.2.14).

 

第6.2节 <wbr> <wbr>旋转体的体积

First take x as the independent variable and use the Disc Method. R is the region under the curve

                    y=________________,       0xr.

 

The hemisphere has volume

 

 

 

 

Therefore the sphere has volume

                                  V= ____ πr3.

 

 

Now take y as the independent variable and use the Cylindrical Shell Method.

R is the region under the curve.

 

               x =_______ 0yr.

The hemisphere has volume

              

 

 

 

Putting  u = r² - y² , du = -2 y dy, we get

 

 

 

Thus again V=____

   

PROBLEMS  FOR  SECTION  6.2

In Problems 1-10 the region under the given curve is rotated about (a) the x-axis, (b) the y-axis.

 

 

Sketch the region and find the volumes of the two solids of revolution.

   y= x²,    0 x                    y= x3    0 x

   y= ___ 0 x                    y=_______, 2 x 4

   y= 1-x   0 x                    y=x     1 x 2

   y= ____ 0 x                    y= ____  2 x  

   y= x -3,    1 x                  10   y=1/x   1 x 2

 

In Problems 11-22 the region bounded by the given curves is rotated about (a) the x-axis, (b) the y-axis. Sketch the region and find the volumes of the two solids of revolution.

 

11    x, y0  y =_________                    12    y = 0     y = x - x²

13    y = x,     y = 2x,  0 x                  14    y = x²,     y = x,

15    y = x3,    y = x²                             16    y = 3/x,    y = 4 - x

17    x = 0,     x= y- y                                     18    x = y,     x= 2y- y²  

19    x = 0,     x= y+1/ y, 1 y 2

20    x0    y0, 2 + y² = 4

21    y=0 ,     y = x-2,     y= _______

22    y=___ x ,  y = 1 - x,    y= x - 1/x   ( first quadrant )

 

In Problems 23-34 the region under the given curve is rotated about the x-axis. Find the volume of the solid of revolution.

23    y=____, 0 x π

24    y= cos x______ 0 x π/2

25    y= cos x - sin x, ,  0 x π/4

26    y= sin (x/2) + cos (x/2),  0 x π

27    y = ex 0 x                     28    y = e1-2x 0 x 2

29    y = xex3,  0 x                    30    y=_____ , 0 x 3

31    y = 1/___, 1 x                    32    y = ___, 0 x

33    y = ___, 1 x                     34   y = ___, 0 x 1

 

In Problems 35-46 the region is rotated about the x-axis. Find the volume of the solid of revolution.

 

35     y = ________, π /2 x π                 36   y = ________, π /6 x π/2   

37     y = sin (x²),   0 x_____               38   y = cos (x²'),   0 x_____

39     y = ex² 0 x                        40   y = ex/x 1 x 2

41     y = 1/x ex 1 x                      42   y = xex3,  1 x 2

43

45

47     A hole of radius ais bored through the center of a sphere of radius r(a < r). Find the

       volume of the remaining part of the sphere.

48     A sphere of radius ris cut by a horizontal plane at a distance cabove the center of the

       sphere. Find the volume of the part of the sphere above the plane (c < r ).

 

49      A hole of radius ais bored along the axis of a cone of height hand base of radius r.

        Find the remaining volume (a < r).

50  Find the volume of the solid generated by rotating an ellipse a²x ²+ b²y² = 1 about the x-axis.

    Hint:the portion of the ellipse in the first quadrant will generate half the volume.

51  the sector of a circle shown in the figure is rotated about(a) the x-axis, (b) the y-axis.

    Find the volumes of the solids of revolution.

第6.2节 <wbr> <wbr>旋转体的体积

 

 

 

 

 

 

 

 

52  The region bounded by the curves y = x², y=x is rotated about (a) the line y= -1, (b) the line

x= -2. Find the volumes of the solids of revolution.

53  Find the volume of the torus ( donut ) generated by rotating the circle of radius r with center

at(c, 0) around the y-axis ( r <0 ).

54 (a) Find a general formula for the volume of the solid of revolution generated by rotating the

     region bounded by the curves y=f(x), y=g(x), axb, about the line y= -k.

     (b) Do the same for a rotation about the line x = -h.

 

 

 

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有