加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

第4.5节  两条曲线之间的面积

(2013-07-14 01:39:20)
标签:

it

4.5  AREA  BETWEEN  TWO  CURVES

A region in the plane can often be represented as the region between two curves. For example, the unit circle is the region between the curves

 

 

 

 

shown in Figure 4.5.1. Consider two continuous functions f and g on [ a, b] such that f(x) g(x) for all x in [ a, b]. The region R, bounded by the curves

           y = f(x),  y = g(x),  x = a,  x= b,

is called the region between f(x)and g(x) from a to b. If both curves are above the x-axis as in Figure 4.5.2, the area of the region Rcan be found by subtracting the area below f from the area below g:

 area of R = ___g(x ) dx - _____ f(x) dx.

 

It is usually easier to work with a single integral and write

                       area of R = ___( g(x)- f(x)) dx.

 

第4.5节 <wbr> <wbr>两条曲线之间的面积

 

第4.5节 <wbr> <wbr>两条曲线之间的面积

 

 

 

 

 

 

 

 

 

Figure 4.5.1                               Figure 4.5.2

 

In the general case shown in Figure 4.5.3, we may move the region R above the x-axis by adding a constant cto both f(x) and g(x) without changing the area, and the same formula holds:

          area of R = ___(g(x) + c)dx- ____(f(x) + c) dx

                   =_______________(g(x) - f(x)) dx.

 

第4.5节 <wbr> <wbr>两条曲线之间的面积

 

 

 

第4.5节 <wbr> <wbr>两条曲线之间的面积

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.3

To sum up, we define the area between two curves as follows.

 

DEFINITION

         If f and g are continuous and f(x) g(x) for a x b, then the area of the region R between f(x) and g(x) from a to b is defined as

                       ______ (g(x) - f(x)) dx.

EXAMPLE 1  Find the area of the region between the curves y= ____ x  - 1 and y=x

          From x=1 to x=2. In Figure 4.5.4, we sketch the curves to check that

          ____ x -1 xfor 1 x 2. Then

          

 

 

 

 

 

 

 

 

第4.5节 <wbr> <wbr>两条曲线之间的面积

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.5.4

EXAMPLE 2  Find the area of the region bounded above by y = x+2 and below

              by y=x².

              Part of the problem is to find the limits of integration. First draw a

              sketch (Figure 4.5.5). The curves intersect at two points, which can be

              found by solving the equation x+2 = x²for x.

 

               x²- (x+2) = 0,     (x+1) (x+2) = 0,

                   x= -1    and   x=2.

Then

 

 

 

 

 

第4.5节 <wbr> <wbr>两条曲线之间的面积

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.5

 

EXAMPLE 3 Find the area of the region Rbounded below by the line y = -1 and above by the curves y= x3 and y= 2-x. The region is shown in Figure 4.5.6.

 

第4.5节 <wbr> <wbr>两条曲线之间的面积

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.6

      This problem can be solved in three ways. Each solution illustrates a different trick which is useful in other area problems. The three corners of the region are:

               (-1, -1),    where y = x3and y= -1 cross.

               (3, -1),    where y = 2 - x and y= -1 cross.

               (1, 1),    where y = x3   and y= 2-xcross.

 

Note that y =x3and y=2 - x can cross at only one point because x3is always increasing and 2 -xis always decreasing.

 

FIRST SOLUTION    Break the region into the two parts shown in Figure 4.5.7:

            R1from x= -1 to x=1, and R2from x=1 to x=3. Then

            area of R = area of R1+ area of R2.

            area of R1=___x3- (-1 ) dx = ___ x4+ x ]___=2.

            area of R2=___(2-x) - (-1 ) dx = 3x - ___x²]___=2.

            area of R = 2+2=4.

 

第4.5节 <wbr> <wbr>两条曲线之间的面积

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.7

 

SECOND SOLUTION Form the triangular region Sbetween y= -1 and y=2 -x from -1 to 3. The region Ris obtained by subtracting from Sthe region S1show in Figure 4.5.8. Then

                    area of R = area of S - area of S1.

                    area of S = __(2- x) - (-1) dx = 3x -__x²]__=8

                    area of S1 = __(2- x) - x3dx = 2x - __ x²- __x4]__=4.

                    area of R = 8- 4 = 4.

 

 

第4.5节 <wbr> <wbr>两条曲线之间的面积

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.8

 THIRD  SOLUTION  Use y as the independent variable and xas the dependent variable. Write the boundary curves with x as a function of y.

                     y= 2 - x          becomes x=2 -y.

                     y = x           becomes x=y1/3.

 

The limits of integration are y= -1 and  y=1 (see Figure 4.5.9). Then

 A= ____(2-y) - y1/3 dy = 2y - __ - __ y4/3]__ = 4.

 

As expected, all three solutions gave the same answer.

第4.5节 <wbr> <wbr>两条曲线之间的面积

 

 

 

 

 

 

 

 

 

Figure 4.5.9

 

PROBLEMS  FOR  SECTION 4.5

In Problems 1-43 below, sketch the given curves and find the area of the region bounded by them.

  f(x)= 0,   g(x) = 5x - x²,  0 x 4

  f(x)= ____  g(x) = x²,  1 x 4

  f(x)=______,   g(x) = 1,  -1 x 1

  y= x-2, y=3x1/35 ,  0 x 1

y=_____, y=_______, 0 x 4

  y=_____, y=_______, -0 x 1

  The x-axis and the curve y= -5+6x-x²

  The x-axis and the curve y= 1-x4

  The y-axis and the curve x= 25-y²

10  The y-axis and the curve x= y(8-y)

11    y =cos x, y=2cosx, -π/2xπ/2

12    y =sin x cos x, y=1, 0xπ/2

13   y = -sin x , y=sin x, 0xπ

14   y = sin x , y=cos x, 0xπ/4

15   y =sin x cos x, y=sin x, 0xπ

16   y =sin ²x cos x, y=sin x cos x, 0xπ/2

17   y=x, y=ex, 0x2

18   y=e-x, y=ex, 0x2

19   y= -e-x, y=ex,  -1x1

20   y= xex², y=e 0x1

21   y=_______, y=1,  0x≤2

22   y=_______, y=_______ 0x≤2

23   y=1/x, y=x 0x≤2

24   y=________, y=______ , 0x≤1

25   f(x) =x3/2, g(x) =x2/3

26   y=x² -2x, y= x-2

27   y=x4 -2x², y= 2x²-2

28   y=x4 -1, y= x3 - x

29   y=x4/( x²+1), y= 1/(x² +1)

30   y=_________, y=________, 0x

31   y=2x², y=x² + 4

32   x=y²,  x=2 - y²

33    __ +__ = 1 and the x-and y-axes

34    x²y = 4, x² + y = 5 (first quadrant)

35  y=x______, y=2x

36   y=0, y=x3 +x +2, x = 2

37   y= 2x+ 4, y= 2 - 3x, y= -x

38   y= - 1, y=(x-1)², y=(x+1)²

39   y=___ y=1,   y=10 - 2x

40   y=x-2,  y=2 - x  y=_____

41   y= -x,  y=______  y=3x - 2

42   y= -2,  y=x3+x,   x + y= 3

43   y=   y=2x-2,   y=2x-3  (first quadrant)

44  Find the area of the ellipse x²/a²+y²/b²=1. Use the fact that the unit circle has area π.

45  Sketch the four-sided region bounded by the lines y=1, y=x, y=2x, and

    y=6-x and find its area.

46  Find the number c > 0 such that the region bounded by the curves y=x,y=-2x,

    and x=chas area 6.

47  Find the number csuch that the region bounded by the curves y=x²and

    y=cxhas area 9.

48  Find the number c>0 such that the region bounded by the curves y=x²and y=c has

    area 36.

49  Find the number c >0 such that the region bounded by the curves y=x²and y=cx has

    area 9.

50  Find the value of cbetween -1 and 2 such that the area of the region bounded by the

    lines y= -x, y=2x, and y=1+cxis a minimum.

51  Find the value of csuch that the line y=cbisects the region bounded by the curves

     y= x²and y =1

52  Find the value of csuch that the line y=cx bisects the region bounded by the x-axis

    and the curve y= x- x²

 


0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有