//内存空闲分区的描述
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
//常量定义
#define PROCESS_NAME_LEN 32
#define MIN_SLICE
10
#define DEFAULT_MEM_SIZE 1024
#define DEFAULT_MEM_START 0
#define MA_FF 1
#define MA_BF 2
#define MA_WF 3
int mem_size=DEFAULT_MEM_SIZE;
int ma_algorithm = MA_FF;
static int pid = 0;
int flag = 0;
struct free_block_type{
int size;
int start_addr;
struct free_block_type *next;
};
struct free_block_type *free_block;
//描述已分配的内存块
struct allocated_block{
int pid;
int size;
int start_addr;
char process_name[PROCESS_NAME_LEN];
struct allocated_block *next;
};
struct allocated_block *allocated_block_head = NULL;
//函数声明
struct free_block_type* init_free_block(int mem_size);
void display_menu();
int set_mem_size();
void set_algorithm();
void rearrange(int algorithm);
int rearrange_FF();
int rearrange_BF();
int rearrange_WF();
int new_process();
int allocate_mem(struct allocated_block *ab);
void kill_process();
int free_mem(struct allocated_block *ab);
int dispose(struct allocated_block *free_ab);
int display_mem_usage();
void do_exit();
struct allocated_block *find_process(int pid);
int main(){
char choice;
pid=0;
free_block = init_free_block(mem_size); //初始化空闲区
while(1) {
display_menu();
//显示菜单
fflush(stdin);
choice=getchar();
//获取用户输入
switch(choice){
case '1': set_mem_size(); break;
//设置内存大小
case '2': set_algorithm();flag=1; break;//设置算法
case '3': new_process(); flag=1; break;//创建新进程
case '4': kill_process(); flag=1; break;//删除进程
case '5': display_mem_usage();
flag=1; break; //显示内存使用
case '0': do_exit(); exit(0);
//释放链表并退出
default: break;
}
}
return 1;
}
struct free_block_type* init_free_block(int mem_size){
struct free_block_type *fb;
fb=(struct free_block_type *)malloc(sizeof(struct
free_block_type));
if(fb==NULL){
printf("No mem\n");
return NULL;
}
fb->size = mem_size;
fb->start_addr = DEFAULT_MEM_START;
fb->next = NULL;
return fb;
}
void display_menu(){
printf("\n");
printf("1 - Set memory size (default=%d)\n",
DEFAULT_MEM_SIZE);
printf("2 - Select memory allocation algorithm\n");
printf("3 - New process \n");
printf("4 - Terminate a process \n");
printf("5 - Display memory usage \n");
printf("0 - Exit\n");
}
int set_mem_size(){
int size;
if(flag!=0){
//防止重复设置
printf("Cannot set memory size again\n");
return 0;
}
printf("Total memory size =");
scanf("%d", &size);
if(size>0) {
mem_size = size;
free_block->size = mem_size;
}
flag=1;
return 1;
}
void set_algorithm(){
int algorithm;
while(1) {
printf("\t1 - First Fit\n");
printf("\t2 - Best Fit \n");
printf("\t3 - Worst Fit \n");
scanf("%d", &algorithm);
if(algorithm>=1 &&
algorithm <=3) {
ma_algorithm = algorithm;
break;
}
else
printf("输入有误,请重新输入!\n");
}
//按指定算法重新排列空闲区链表
rearrange(ma_algorithm);
}
void rearrange(int algorithm){
switch(algorithm){
case MA_FF:
rearrange_FF(); break;
case MA_BF:
rearrange_BF(); break;
case MA_WF: rearrange_WF(); break;
}
}
int rearrange_FF(){
struct free_block_type *temp;
//使用头插法,thead为临时头,p为最小地址的数据块的前一个结点
struct free_block_type *thead=NULL,*p=NULL;
//当前的最小地址
int min_addr = free_block->start_addr;
temp = free_block;
while(temp->next!=NULL) {
if(temp->next->start_addr<min_addr)
{
min_addr =
temp->next->start_addr;
p = temp;
}
temp = temp->next;
}
if(NULL!=p) {
temp = p->next;
p->next =
p->next->next;
temp->next = free_block;
free_block = temp;
}
//printf("2222222222\n");
//printf("%d\n",free_block->start_addr);
thead = free_block;
p = free_block;
temp = free_block->next;
while(thead->next!=NULL) {
min_addr =
thead->next->start_addr;
while(temp->next!=NULL) {
if(temp->next->start_addr<min_addr)
{
min_addr =
temp->next->start_addr;
p = temp;
}
temp = temp->next;
}
if(p->next!=thead->next) {
temp = p->next;
p->next =
p->next->next;
temp->next = thead->next;
thead->next = temp;
}
thead = thead->next;
p = thead;
temp = thead->next;
}
//请自行补充
return 1;
}
int rearrange_BF(){
struct free_block_type *temp;
//使用头插法,thead为临时头,p为最小内存的数据块的前一个结点
struct free_block_type *thead=NULL,*p=NULL;
//当前的最小内存
int min_size = free_block->size;
temp = free_block;
while(temp->next!=NULL) {
if(temp->next->size<min_size)
{
min_size = temp->next->size;
p = temp;
}
temp = temp->next;
}
if(NULL!=p) {
temp = p->next;
p->next =
p->next->next;
temp->next = free_block;
free_block = temp;
}
thead = free_block;
p = free_block;
temp = free_block->next;
while(thead->next!=NULL) {
min_size = thead->next->size;
while(temp->next!=NULL) {
if(temp->next->size<min_size)
{
min_size = temp->next->size;
p = temp;
}
temp = temp->next;
}
if(p->next!=thead->next) {
temp = p->next;
p->next =
p->next->next;
temp->next = thead->next;
thead->next = temp;
}
thead = thead->next;
p = thead;
temp = thead->next;
}
//请自行补充
return 1;
}
int rearrange_WF(){
struct free_block_type *temp;
//使用头插法,thead为临时头,p为最大内存的数据块的前一个结点
struct free_block_type *thead=NULL,*p=NULL;
//当前的最大内存
int max_size = free_block->size;
temp = free_block;
while(temp->next!=NULL) {
if(temp->next->size>max_size)
{
max_size = temp->next->size;
p = temp;
}
temp = temp->next;
}
if(NULL!=p) {
temp = p->next;
p->next =
p->next->next;
temp->next = free_block;
free_block = temp;
}
thead = free_block;
p = free_block;
temp = free_block->next;
while(thead->next!=NULL) {
max_size = thead->next->size;
while(temp->next!=NULL) {
if(temp->next->size>max_size)
{
max_size = temp->next->size;
p = temp;
}
temp = temp->next;
}
if(p->next!=thead->next) {
temp = p->next;
p->next =
p->next->next;
temp->next = thead->next;
thead->next = temp;
}
thead = thead->next;
p = thead;
temp = thead->next;
}
//请自行补充
return 1;
}
int new_process(){
struct allocated_block *ab;
int size;
int ret;
ab = (struct allocated_block *)malloc(sizeof(struct
allocated_block));
if(!ab) exit(-5);
ab->next = NULL;
pid++;
sprintf(ab->process_name, "PROCESS-d", pid);
ab->pid = pid;
while(1) {
printf("Memory for %s:", ab->process_name);
scanf("%d", &size);
if(size>0) {
ab->size=size;
break;
}
else printf("输入大小有误,请重新输入\n");
}
//printf("11111111111111\n");
ret = allocate_mem(ab);
//printf("11111111111111\n");
if((ret==1) &&(allocated_block_head
== NULL)){
allocated_block_head=ab;
return 1;
}
else if (ret==1) {
ab->next = allocated_block_head;
allocated_block_head = ab;
return 2;
}
else if(ret==-1){
printf("Allocation fail\n");
pid--;
free(ab);
return -1;
}
return 3;
}
int allocate_mem(struct allocated_block *ab){
struct free_block_type *fbt, *pre,*head,*temp,*tt;
struct allocated_block *tp;
int request_size=ab->size;
int sum=0;
int max;
head = (struct free_block_type *)malloc(sizeof(struct
free_block_type));
pre = head;
fbt = free_block;
pre->next = fbt;
//printf("11111111111111\n");
//根据当前算法在空闲分区链表中搜索合适空闲分区进行分配,分配时注意以下情况:
// 1. 找到可满足空闲分区且分配后剩余空间足够大,则分割
// 2. 找到可满足空闲分区且但分配后剩余空间比较小,则一起分配
// 3.
找不可满足需要的空闲分区但空闲分区之和能满足需要,则采用内存紧缩技术,进行空闲分区的合并,然后再分配
// 4. 在成功分配内存后,应保持空闲分区按照相应算法有序
// 5. 分配成功则返回1,否则返回-1
if(ma_algorithm==MA_WF) {
if(NULL==fbt||fbt->size<request_size)
return -1;
}
else {
while(NULL!=fbt&&fbt->size<request_size)
{
pre = fbt;
fbt = fbt->next;
}
}
if(NULL==fbt||fbt->size<request_size)
{
if(NULL!=free_block->next) {
sum = free_block->size;
temp = free_block->next;
while(NULL!=temp) {
sum += temp->size;
if(sum>=request_size)
break;
temp = temp->next;
}
if(NULL==temp)
return -1;
else {
pre = free_block;
max = free_block->start_addr;
fbt = free_block;
while(temp->next!=pre) {
if(max<pre->start_addr) {
max = pre->start_addr;
fbt = pre;
}
pre = pre->next;
}
pre = free_block;
while(temp->next!=pre) {
tp = allocated_block_head;
tt = free_block;
if(pre!=fbt) {
while(NULL!=tp) {
if(tp->start_addr>pre->start_addr)
tp->start_addr = tp->start_addr -
pre->size;
tp = tp->next;
}
while(NULL!=tt) {
if(tt->start_addr>pre->start_addr)
tt->start_addr = tt->start_addr -
pre->size;
tt = tt->next;
}
}
pre = pre->next;
}
pre = free_block;
while(pre!=temp->next) {
if(pre!=fbt)
free(pre);
pre = pre->next;
}
free_block = fbt;
free_block->size = sum;
free_block->next = temp->next;
if(free_block->size - request_size <
MIN_SLICE) {
ab->size = free_block->size;
ab->start_addr =
free_block->start_addr;
pre = free_block;
free_block = free_block->next;
free(pre);
}
else {
ab->start_addr =
fbt->start_addr;
free_block->start_addr =
free_block->start_addr + request_size;
free_block->size = free_block->size -
request_size;
}
}
}
else
return -1;
}
else {
//将内存块全部分配
if(fbt->size - request_size <
MIN_SLICE) {
ab->size = fbt->size;
ab->start_addr =
fbt->start_addr;
if(pre->next==free_block) {
free_block = fbt->next;
}
else
pre->next = fbt->next;
free(fbt);
}
else {
ab->start_addr =
fbt->start_addr;
fbt->start_addr = fbt->start_addr +
request_size;
fbt->size = fbt->size -
request_size;
}
}
free(head);
//printf("11111111111111\n");
rearrange(ma_algorithm);
//请自行补充。。。。。
return 1;
}
void kill_process(){
struct allocated_block *ab;
int pid;
printf("Kill Process, pid=");
scanf("%d", &pid);
ab = find_process(pid);
if(ab!=NULL){
//printf("11111111111111\n");
free_mem(ab);
//printf("11111111111111\n");
dispose(ab);
}
else {
printf("没有pid为%d的进程!\n",pid);
}
}
struct allocated_block *find_process(int pid) {
struct allocated_block *ab=NULL;
ab = allocated_block_head;
while(NULL!=ab&&ab->pid!=pid)
ab = ab->next;
return ab;
}
int free_mem(struct allocated_block *ab){
int algorithm = ma_algorithm;
struct free_block_type *fbt, *pre=NULL,*head;
fbt=(struct free_block_type*) malloc(sizeof(struct
free_block_type));
pre=(struct free_block_type*) malloc(sizeof(struct
free_block_type));
if(!fbt)
return -1;
// 进行可能的合并,基本策略如下
// 1. 将新释放的结点插入到空闲分区队列末尾
// 2. 对空闲链表按照地址有序排列
// 3. 检查并合并相邻的空闲分区
// 4. 将空闲链表重新按照当前算法排序
head = pre;
fbt->start_addr =
ab->start_addr;
fbt->size = ab->size;
fbt->next = free_block;
//新释放的结点插入到空闲分区链表的表头
free_block = fbt;
rearrange_FF();
//对空闲链表按照地址有序排列
//printf("11111111111111\n");
pre->next = free_block; //求的pre为fbt的前一个结点
pre->size = 0;
while(pre->next->start_addr!=fbt->start_addr)
pre = pre->next;
//左右分区都存在
if(0!=pre->size&&NULL!=fbt->next)
{
//左右分区都可合并
if((pre->start_addr+pre->size)==fbt->start_addr
&&
(fbt->start_addr+fbt->size)==fbt->next->start_addr)
{
pre->size = pre->size +
fbt->size +
fbt->next->size;
pre->next =
fbt->next->next;
free(fbt->next);
free(fbt);
}
//左分区可合并
else
if((pre->start_addr+pre->size)==fbt->start_addr)
{
pre->size = pre->size +
fbt->size;
pre->next = fbt->next;
free(fbt);
}
//右分区可合并
else
if((fbt->start_addr+fbt->size)==fbt->next->start_addr)
{
fbt->size = fbt->size +
fbt->next->size;
fbt->next =
fbt->next->next;
free(fbt->next);
}
}
//左分区不存在
else if(0==pre->size) {
if((fbt->start_addr+fbt->size)==fbt->next->start_addr)
{
fbt->size = fbt->size +
fbt->next->size;
fbt->next =
fbt->next->next;
free(fbt->next);
}
}
//右分区不存在
else if(NULL==fbt->next) {
if((pre->start_addr+pre->size)==fbt->start_addr)
{
pre->size = pre->size +
fbt->size;
pre->next = fbt->next;
free(fbt);
}
}
//printf("33333333333\n");
rearrange(algorithm);
free(head);
//请自行补充……
return 1;
}
int dispose(struct allocated_block *free_ab){
struct allocated_block *pre, *ab;
if(free_ab == allocated_block_head) {
allocated_block_head =
allocated_block_head->next;
free(free_ab);
return 1;
}
pre = allocated_block_head;
ab = allocated_block_head->next;
while(ab!=free_ab){ pre = ab; ab =
ab->next; }
pre->next = ab->next;
free(ab);
return 2;
}
int display_mem_usage(){
struct free_block_type *fbt=free_block;
struct allocated_block *ab=allocated_block_head;
if(fbt==NULL) return(-1);
printf("----------------------------------------------------------\n");
printf("Free Memory:\n");
printf(" s s\n", "
start_addr", "
size");
while(fbt!=NULL){
printf(" d d\n", fbt->start_addr,
fbt->size);
fbt=fbt->next;
}
printf("\nUsed Memory:\n");
printf("s s s s\n", "PID", "ProcessName", "start_addr", "
size");
while(ab!=NULL){
printf("d s d d\n", ab->pid,
ab->process_name, ab->start_addr,
ab->size);
ab=ab->next;
}
printf("----------------------------------------------------------\n");
return 0;
}
void do_exit() {
}
加载中,请稍候......