一文看尽锂电设备行业
(2021-08-15 14:24:52)
一、锂电池生产制造流程及核心设备
(一)生产流程
锂电池的生产工艺分为前、中、后三个阶段,前段工序的目的是将原材料加工成为极片,核心工序为涂布;中段目的是将极片加工成为未激活电芯;后段工序是检测封装,核心工序是化成、分容。
锂电设备按照电池生产制造流程,划分为前段设备、中段设备、后段设备。
前段设备价值占比约40%,其中涂布机价值占75%,辊压机价值大于分切机。三元材料对前段设备的性能要求更高,前段设备价值占比会逐步增加。
中段设备价值占比约30%,其中卷绕机价值占比70%。目前卷绕机市场集中度较高,CR3达到60%-70%。卷绕机高端市场受到韩国KOEM和日本CKD的竞争,国内高端市占率50%。
后段设备价值占比约30%,其中化成分容系统占70%,组装占30%。
(二)前段:打造涂覆有正负极活性物质的极片
1、前段工序
前段工序主要包括浆料搅拌、正负极涂布、辊压、分切、极片制作和模切。
搅拌:先使用锂电池真空搅拌机,在专用溶剂和黏结剂的作用下,混合粉末状的正负极活性物质,经过高速搅拌均匀后,制成完全没有气泡的浆状正负极物质。
涂布:将制成的浆料均匀涂覆在金属箔的表面,烘干,分别制成正、负极极片。
辊压:辊压机通过上下两辊相向运行产生的压力,对极片的涂布表面进行挤压加工,极片受到高压作用由原来蓬松状态变成密实状态的极片,辊压对能量密度的明显相当关键。
分切:将辊压好的电极带按照不同电池型号,切成装配电池所需的长度和宽度,要求在切割时不出现毛刺。
2、涂布机
涂布的主要目的是将稳定性好、粘度好、流动性好的浆料,均匀地涂覆在正负极表面上。其对锂电池的重要意义主要体现在一致性、循环寿命、安全性三方面。在涂布过程中,若极片前、中、后三段位置正负极浆料涂层厚度不一致,或者极片前后参数不一致,则容易引起电池容量过低或过高,且可能在电池循环过程中形成析锂,影响电池寿命。涂布过程要严格确保没有颗粒、杂物、粉尘等混入极片中,如果混入杂物会引起电池内部微短路,严重时导致电池起火爆炸。因此为使中段的卷绕工艺能尽可能粗细均匀、紧密,要求正负极的涂布误差尽可能小,涂布机的先进程度会直接影响电池化学性能的优劣,以及最终产品的良品率(电池厂家通常要求在99%以上)。
涂布机是前段工序的核心设备。涂布机经历了三种结构类型的演化,依次是刮刀式、转移式、狭缝挤压式涂布。刮刀式主要应用于实验室条件下;转移式涂布主要应用于3C电池的生产;狭缝式挤压涂布主要应用于动力电池,近几年该类型由于动力电池生产需求的爆发而快速增加。挤压涂布技术作为这三种中最先进的技术,可以用于较高粘度流体涂布,获得较高精度的涂层。将涂布机的结构分拆来看,涂布头的设计对涂布精度有极为重要的影响,这类高精度控制的核心零部件尚需要进口。涂布机当前的国产化率较高,达到70%-80%以上,但高端产品的涂布头仍主要有国外提供,如龙头新嘉拓的涂布头曾主要由松下提供。
涂布机设备的技术先进程度主要考察四个方面:涂布技术,张力技术,纠偏技术,干燥技术。涂布技术需要满足不同厚度的生产要求,现在正极锂电铝箔厚度已经薄至6-8微米,负极锂电铜箔厚度已经薄至4.5-6微米,隔膜涂布也只有几个微米,石墨烯涂布甚至更薄,不同的厚度还需要针对客户开发不同的涂布方法,保证对浆料的涂布厚度精度控制在2微米以下。张力技术,由于幅材沿着涂布方向运动不可避免地出现张力不均匀状态,导致涂布质量缺乏一致性,因此需要确保片路运行过程中各段均有良好的张力控制。纠偏技术,由于涂布设备长度多在数十米,片路运行过程中会出现位置偏差,为了保证无论是铜膜铝膜还是很薄的隔膜都能在片路上平稳有效地运行,并实现精密涂布,需要选用不同的驱动形式配合响应的控制系统来纠偏。干燥技术,涂布生产的速度瓶颈在于烘干干燥,最直接的手段是加长风箱,但会带来成本和占地增加,加强之后还需要增强纠偏和张力控制,要想进一步改善干燥效率就需要改进风场的控制,温度场的控制,布局形式,尽量在保证涂布速度的情况下减小风箱长度。
(一)生产流程
锂电池的生产工艺分为前、中、后三个阶段,前段工序的目的是将原材料加工成为极片,核心工序为涂布;中段目的是将极片加工成为未激活电芯;后段工序是检测封装,核心工序是化成、分容。
锂电设备按照电池生产制造流程,划分为前段设备、中段设备、后段设备。
前段设备价值占比约40%,其中涂布机价值占75%,辊压机价值大于分切机。三元材料对前段设备的性能要求更高,前段设备价值占比会逐步增加。
中段设备价值占比约30%,其中卷绕机价值占比70%。目前卷绕机市场集中度较高,CR3达到60%-70%。卷绕机高端市场受到韩国KOEM和日本CKD的竞争,国内高端市占率50%。
后段设备价值占比约30%,其中化成分容系统占70%,组装占30%。
(二)前段:打造涂覆有正负极活性物质的极片
1、前段工序
前段工序主要包括浆料搅拌、正负极涂布、辊压、分切、极片制作和模切。
搅拌:先使用锂电池真空搅拌机,在专用溶剂和黏结剂的作用下,混合粉末状的正负极活性物质,经过高速搅拌均匀后,制成完全没有气泡的浆状正负极物质。
涂布:将制成的浆料均匀涂覆在金属箔的表面,烘干,分别制成正、负极极片。
辊压:辊压机通过上下两辊相向运行产生的压力,对极片的涂布表面进行挤压加工,极片受到高压作用由原来蓬松状态变成密实状态的极片,辊压对能量密度的明显相当关键。
分切:将辊压好的电极带按照不同电池型号,切成装配电池所需的长度和宽度,要求在切割时不出现毛刺。
2、涂布机
涂布的主要目的是将稳定性好、粘度好、流动性好的浆料,均匀地涂覆在正负极表面上。其对锂电池的重要意义主要体现在一致性、循环寿命、安全性三方面。在涂布过程中,若极片前、中、后三段位置正负极浆料涂层厚度不一致,或者极片前后参数不一致,则容易引起电池容量过低或过高,且可能在电池循环过程中形成析锂,影响电池寿命。涂布过程要严格确保没有颗粒、杂物、粉尘等混入极片中,如果混入杂物会引起电池内部微短路,严重时导致电池起火爆炸。因此为使中段的卷绕工艺能尽可能粗细均匀、紧密,要求正负极的涂布误差尽可能小,涂布机的先进程度会直接影响电池化学性能的优劣,以及最终产品的良品率(电池厂家通常要求在99%以上)。
涂布机是前段工序的核心设备。涂布机经历了三种结构类型的演化,依次是刮刀式、转移式、狭缝挤压式涂布。刮刀式主要应用于实验室条件下;转移式涂布主要应用于3C电池的生产;狭缝式挤压涂布主要应用于动力电池,近几年该类型由于动力电池生产需求的爆发而快速增加。挤压涂布技术作为这三种中最先进的技术,可以用于较高粘度流体涂布,获得较高精度的涂层。将涂布机的结构分拆来看,涂布头的设计对涂布精度有极为重要的影响,这类高精度控制的核心零部件尚需要进口。涂布机当前的国产化率较高,达到70%-80%以上,但高端产品的涂布头仍主要有国外提供,如龙头新嘉拓的涂布头曾主要由松下提供。
涂布机设备的技术先进程度主要考察四个方面:涂布技术,张力技术,纠偏技术,干燥技术。涂布技术需要满足不同厚度的生产要求,现在正极锂电铝箔厚度已经薄至6-8微米,负极锂电铜箔厚度已经薄至4.5-6微米,隔膜涂布也只有几个微米,石墨烯涂布甚至更薄,不同的厚度还需要针对客户开发不同的涂布方法,保证对浆料的涂布厚度精度控制在2微米以下。张力技术,由于幅材沿着涂布方向运动不可避免地出现张力不均匀状态,导致涂布质量缺乏一致性,因此需要确保片路运行过程中各段均有良好的张力控制。纠偏技术,由于涂布设备长度多在数十米,片路运行过程中会出现位置偏差,为了保证无论是铜膜铝膜还是很薄的隔膜都能在片路上平稳有效地运行,并实现精密涂布,需要选用不同的驱动形式配合响应的控制系统来纠偏。干燥技术,涂布生产的速度瓶颈在于烘干干燥,最直接的手段是加长风箱,但会带来成本和占地增加,加强之后还需要增强纠偏和张力控制,要想进一步改善干燥效率就需要改进风场的控制,温度场的控制,布局形式,尽量在保证涂布速度的情况下减小风箱长度。

加载中…