线性代数的重要概念
(2008-10-26 10:38:53)
标签:
杂谈 |
1.
2.
①、 和 的大小无关;
②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;
③、某行(列)的元素乘以该行(列)元素的代数余子式为 ;
3.
4.
将 上、下翻转或左右翻转,所得行列式为 ,则 ;
将 顺时针或逆时针旋转 ,所得行列式为 ,则 ;
将 主对角线翻转后(转置),所得行列式为 ,则 ;
将 主副角线翻转后,所得行列式为 ,则 ;
5.
①、主对角行列式:主对角元素的乘积;
②、副对角行列式:副对角元素的乘积 ;
③、上、下三角行列式( ):主对角元素的乘积;
④、 和 :副对角元素的乘积 ;
⑤、拉普拉斯展开式: 、
⑥、范德蒙行列式:大指标减小指标的连乘积;
⑦、特征值;
6.
7.
①、 ;
②、反证法;
③、构造齐次方程组 ,证明其有非零解;
④、利用秩,证明 ;
⑤、证明0是其特征值;
2、矩阵
1.
(是非奇异矩阵);
(是满秩矩阵)
的行(列)向量组线性无关;
齐次方程组 有非零解;
, 总有唯一解;
与 等价;
可表示成若干个初等矩阵的乘积;
的特征值全不为0;
是正定矩阵;
的行(列)向量组是 的一组基;
是 中某两组基的过渡矩阵;
2.
3.
4.
5.
若 ,则:
Ⅰ、 ;
Ⅱ、 ;
②、 ;(主对角分块)
③、 ;(副对角分块)
④、 ;(拉普拉斯)
⑤、 ;(拉普拉斯)
3、矩阵的初等变换与线性方程组
1.
等价类:所有与 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;
对于同型矩阵 、 ,若 ;
2.
①、只能通过初等行变换获得;
②、每行首个非0元素必须为1;
③、每行首个非0元素所在列的其他元素必须为0;
3.
①、若 ,则 可逆,且 ;
②、对矩阵 做初等行变化,当 变为 时, 就变成 ,即: ;
③、求解线形方程组:对于 个未知数 个方程 ,如果 ,则 可逆,且 ;
4.
①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;
②、 ,左乘矩阵 , 乘 的各行元素;右乘, 乘 的各列元素;
③、对调两行或两列,符号 ,且 ,例如: ;
④、倍乘某行或某列,符号 ,且 ,例如: ;
⑤、倍加某行或某列,符号 ,且 ,如: ;
5.
①、 ;
②、 ;
③、若 ,则 ;
④、若 、 可逆,则 ;(可逆矩阵不影响矩阵的秩)
⑤、 ;(※)
⑥、 ;(※)
⑦、 ;(※)
⑧、如果 是 矩阵, 是 矩阵,且 ,则:(※)
⑨、若 、 均为 阶方阵,则 ;
6.
①、秩为1的矩阵:一定可以分解为列矩阵(向量) 行矩阵(向量)的形式,再采用结合律;
②、型如 的矩阵:利用二项展开式;
Ⅱ、
Ⅲ、组合的性质: ;
③、利用特征值和相似对角化:
7.
①、伴随矩阵的秩: ;
②、伴随矩阵的特征值: ;
③、 、
8.
①、 , 中有 阶子式不为0, 阶子式全部为0;(两句话)
②、 , 中有 阶子式全部为0;
③、 , 中有 阶子式不为0;
9.
①、 与方程的个数相同,即方程组 有 个方程;
②、 与方程组得未知数个数相同,方程组 为 元方程;
10.
①、对增广矩阵 进行初等行变换(只能使用初等行变换);
②、齐次解为对应齐次方程组的解;
③、特解:自由变量赋初值后求得;
11.
①、 ;
②、 (向量方程, 为 矩阵, 个方程, 个未知数)
③、 (全部按列分块,其中 );
④、 (线性表出)
⑤、有解的充要条件: ( 为未知数的个数或维数)
4、向量组的线性相关性
1.
个 维行向量所组成的向量组 : 构成 矩阵 ;
含有有限个向量的有序向量组与矩阵一一对应;
2.
②、向量的线性表出
③、向量组的相互线性表示
3.
4.
5.
①、
线性相关
②、
线性相关
③、 线性相关
6.
若 线性相关,则 必线性相关;
若 线性无关,则 必线性无关;(向量的个数加加减减,二者为对偶)
若 维向量组 的每个向量上添上 个分量,构成 维向量组 :
若 线性无关,则 也线性无关;反之若 线性相关,则 也线性相关;(向量组的维数加加减减)
简言之:无关组延长后仍无关,反之,不确定;
7.
向量组 能由向量组 线性表示,则 ;( 定理3)
向量组 能由向量组 线性表示
有解;
8.
①、矩阵行等价: (左乘, 可逆) 与 同解
②、矩阵列等价: (右乘, 可逆);
③、矩阵等价: ( 、 可逆);
9.
①、若 与 行等价,则 与 的行秩相等;
②、若 与 行等价,则 与 同解,且 与 的任何对应的列向量组具有相同的线性相关性;
③、矩阵的初等变换不改变矩阵的秩;
④、矩阵 的行秩等于列秩;
10.
①、 的列向量组能由 的列向量组线性表示, 为系数矩阵;
②、 的行向量组能由 的行向量组线性表示, 为系数矩阵;(转置)
11.
①、 只有零解 只有零解;
②、
12.
( )
(必要性: ;充分性:反证法)
13.
②、对矩阵 ,存在 ,
14.
存在一组不全为0的数 ,使得 成立;(定义)
有非零解,即 有非零解;
,系数矩阵的秩小于未知数的个数;
15.
16.
5、相似矩阵和二次型
1.
①、 的列向量都是单位向量,且两两正交,即 ;
②、若 为正交矩阵,则 也为正交阵,且 ;
③、若 、 正交阵,则 也是正交阵;
2.
;
3.
对于实对称阵,不同特征值对应的特征向量正交;
4.
, 、 可逆;
, 、 同型;
②、 与
合同
③、 与
相似
5.
若 为正交矩阵,则 ,(合同、相似的约束条件不同,相似的更严格);
6.
7.
的正惯性指数为 ;
与 合同,即存在可逆矩阵 ,使 ;
的所有特征值均为正数;