分布式多区域多能微网群协同AGC算法
引用本文
席磊, 周礼鹏. 分布式多区域多能微网群协同AGC算法. 自动化学报, 2020, 46(9): 1818−1830 doi: 10.16383/j.aas.c200105
Xi Lei, Zhou Li-Peng. Coordinated AGC algorithm for distributed multi-region multi-energy micro-network group. Acta Automatica Sinica, 2020, 46(9): 1818−1830 doi: 10.16383/j.aas.c200105
http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c200105
关键词
综合能源,多能微网,自动发电控制,强化学习,双重Q学习
摘要
综合能源多区域协同是电网发展趋势, 而核心问题是采用何种方法对多区域进行协同.
本文基于Q
(
文章导读
发展新能源能够解决化石燃料燃烧引起的环境恶化问题, 集成了源、荷、气、热、储等多种分布式能源[1]的综合能源系统[2-3]势在必行, 但规模化的分布式新能源并网将带来强随机扰动, 以及由于传统机组惯性降低、缺乏辅助频率支持、调频容量不足等引起的频率失稳问题[4], 给现代电力系统的运行和控制提出了新的挑战. 因此, 本文从自动发电控制(Automatic generation control, AGC)角度面向多区域多能微网群提出一种新的频率控制方法以实现多区域协同控制.
当前AGC控制方法主要分为传统解析式和机器学习两大类. 基于传统解析式的控制方法, 以PID控制方法为代表[5-6]. 文献[7]提出了基于灰狼优化算法的分数阶PID控制器参数优化整定方案, 解决了网络化时滞互联电网的负荷频率控制(Load frequency control, LFC)问题. 文献[8]提出了一种基于社会学习自适应细菌觅食算法的最优PI/PID控制器设计方法, 以解决互联电网AGC控制器参数优化整定问题. 文献[9]提出了基于随机帝国竞争算法的级联模糊分数阶CFFOPI–FOPID控制器, 以解决AGC问题. 传统控制方法主要根据区域控制偏差误差(Area control error, ACE)单一化地确定总调节功率, 控制机组出力. 然而电力系统新形态下区域间互动变化灵活, 需要根据长期历史数据进行学习、分析、存储, 以对多区域进行协同控制[10].
随着人工智能的崛起, 一些学者将人工智能方法应用于AGC,
试图解决上述问题.
基于人工智能的强化学习能够通过与环境探索试错积累经验分析获取最优策略,
机器学习体系应用在AGC,
尤以基于强化学习的Q学习应用最为广泛. 文献[11]基于Q学习提出了一种改进的极限Q学习算法, 对微电网的下垂控制进行参数整定,
从而实现频率调节与经济调度的一体化. 文献[12]提出了一种孤岛运行模式下基于平均报酬模型的多步R(
多智能体强化学习是解决多智能体系统问题的一种有效方法, 而协作多智能体强化学习专注于解决协作问题.
协作多智能体强化学习与分布式优化有非常密切的联系, 因此求解分布式优化的高效最优化方法可以引入求解协作多智能体强化学习问题[14]. 文献[15]针对多区域互联微网系统, 结合线性自抗扰控制算法和基于原对偶梯度算法的多智能体系统, 提出了一种新的分布式优化控制算法,
有效地结合系统动态特性与优化过程解决负荷频率控制问题. 文献[16]在微网分层控制结构的框架下, 提出多智能体自适应控制算法, 使频率恢复额定值, 且有功功率按各分布式电源的额定功率比例分配.
文献[17]在Q学习基础上提出了一种面向混合交互环境的基于多智能体系统(Multi-agent system, MAS)和元胞自动机的微网分布式协调自趋优控制策略,
调节微源的有功和无功出力及系统频率. 文献[18]提出一种基于多智能体微电网控制框架的多智能体协作学习算法, 有效管理微网中的微电源促使微网协调控制.
文献[19]面向分布式能源提出一种基于虚拟狼群控制策略的分层分布式控制—PDWoLF-PHC
(
因此, 为解决上述问题, 通过引入参数

图

图

图
为了对综合能源模式下的分布式多区域进行协同控制, 本文搭建了融入大量分布式能源的分布式多区域多能微网群协同的AGC模型, 并针对该模型提出了一种多智能体协同的DQ
(
所提算法融入了资格迹,
不仅用于解决强化学习的时间信度分配问题, 而且“后向估计”机理提供了一个逼近最优值函数Q*的渐进机制, 可提高AGC机组功率调节快速性; 同时为解决策略探索过程中动作值的高估,
所提算法在Q(
通过对改进的IEEE标准两区域负荷频率控制模型以及分布式3区域多能微网AGC模型进行仿真, 结果显示, 与其他智能算法相比, 所提算法能提高收敛速度93.92%
作者简介
席磊
三峡大学副教授.
2016年于华南理工大学获得博士学位. 主要研究方向为电力系统运行与控制,
自动发电控制,
智能控制方法.
本文通信作者.
E-mail:
周礼鹏
三峡大学硕士研究生.
主要研究方向为自动发电控制.
E-mail:

加载中…