加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

具有解耦性能的离散时间线性多变量系统最优跟踪控制

(2022-08-03 16:59:51)

引用本文

 

富月, 陈威. 具有解耦性能的离散时间线性多变量系统最优跟踪控制. 自动化学报, 2022, 48(8): 1931−1939 doi: 10.16383/j.aas.c190748

Fu Yue, Chen Wei. Optimal tracking control method for discrete-time linear multivariable systems with decoupling performance. Acta Automatica Sinica, 2022, 48(8): 1931−1939 doi: 10.16383/j.aas.c190748

http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190748

 

关键词

 

解耦跟踪控制离散时间线性系统多变量系统 

 

摘要

 

在传统线性二次跟踪控制方法的基础上, 针对一类具有强耦合特性的离散时间线性多变量系统, 提出了一种具有解耦性能的最优跟踪控制方法. 首先为实现解耦, 将耦合项作为可测干扰, 基于零和博弈思想提出了一种新的性能指标; 然后针对该性能指标, 利用极小值原理设计最优跟踪控制器, 通过适当加权矩阵的选择, 同步实现解耦和跟踪; 最后进行仿真实验, 仿真结果表明了该方法的有效性以及在最优性能等方面的优越性.

 

文章导读

 

跟踪和镇定是控制领域的两个典型问题. 一般来说, 相较于镇定问题, 跟踪更为困难. 这是因为镇定只需要在系统的状态或输出受到干扰而偏离原平衡状态时, 施加控制作用, 使得系统状态或输出恢复到原平衡状态即可, 而跟踪控制问题要求系统的状态或输出能够跟随任意参考输入. 跟踪控制不仅是控制理论研究的热点问题, 在工程领域也具有很强的应用背景, 比如机器人运动轨迹跟踪控制[1]、船舶轨迹跟踪控制[2]和飞行器姿态控制[3].

 

跟踪控制器的设计方法主要分为两类, 一类是追求跟踪误差渐近收敛的常规跟踪控制方法, 另一类是兼顾跟踪误差和整体性能的最优跟踪控制方法. 常规跟踪控制方法通过反馈实现调节, 利用前馈使得系统状态跟踪参考输入. 由于该方法基于零极点对消原理, 如果系统存在不可对消的不稳定零点, 会导致闭环系统输出产生相移和增益误差[4]. 为解决该问题, 文献[4-5]提出了一种多速率前馈跟踪控制方法, 使得存在不稳定零点的线性系统能够完全跟踪参考输入. 20世纪90年代初, 随着自适应控制的发展以及模糊逻辑系统和神经网络等智能算法的引入, 具有不确定性和非线性特性的复杂系统的跟踪控制问题受到人们的广泛关注. 文献[6]针对一类具有不确定动态的回滞非线性系统, 提出了一种鲁棒自适应反步跟踪控制方法, 该方法将整个非线性系统划分为多个子系统, 对每个子系统进行设计, 直到倒推至系统输入. 随着系统阶数的增加, 该方法的推导过程会变得非常复杂, 容易产生复杂度爆炸问题. 文献[7]针对一类模型未知的严反馈的单输入单输出非线性系统, 通过引入动态表面控制技术和最小学习参数方法来解决传统反步法带来的复杂度爆炸的问题, 提出了一种鲁棒自适应跟踪控制方法, 使得系统能够跟踪任意参考输入. 文献[8]针对一类含有外部干扰和建模不确定性的非线性多输入多输出系统, 将模糊控制方法与反步法相结合, 设计鲁棒自适应模糊控制器, 保证系统输出信号一致有界并能收敛到参考输入附近. 文献[9]提出一种基于输出跟踪误差的自适应模糊控制方法, 设计带有模糊观测器的模糊控制器, 来减小未知非线性系统的跟踪误差.

 

上述常规跟踪控制方法的目标是找到一个稳定的控制器, 使得系统状态或输出跟踪参考轨迹. 在控制器设计中, 常常要兼顾到系统的跟踪误差和整体性能. 最优跟踪控制方法可以通过最小化二次型性能指标, 一方面使系统跟踪误差渐近收敛, 另一方面使系统获得最优性能. 文献[10]指出线性二次型最优跟踪(Linear quadratic tracking, LQT)控制器由反馈项和前馈项两部分组成, 其中反馈项使闭环系统稳定, 前馈项使闭环系统输出跟踪参考输入. 文献[11]针对连续时间线性多变量系统, 将开环解耦控制与LQT 相结合, 提出了一种近似最优跟踪控制方法, 实现了多变量系统的解耦和跟踪控制. 设计线性最优跟踪控制器的关键在于求解代数黎卡提方程, 由于该方程中包含着系统模型参数信息, 所以对于这种传统的最优跟踪控制方法, 当系统模型参数未知时, 就无法得到有效应用. 为解决这一问题, 文献[12]针对模型参数部分未知的连续时间线性系统, 提出了一种基于策略迭代的自适应动态规划方法, 通过计算代数黎卡提方程的数值解, 进而得到近似最优跟踪控制律. 不过这类方法大多要求系统状态完全已知, 为了解决这个问题, 文献[13] 针对模型参数部分未知的离散时间线性系统, 仅使用系统输入输出数据, 提出了一种基于值迭代和策略迭代的自适应动态规划方法, 设计近似最优跟踪控制器, 使得系统输出能够跟踪参考输入. 与线性最优跟踪控制器设计方法类似, 设计非线性最优跟踪控制器时需要求解非线性哈密顿雅可比贝尔曼方程. 许多专家学者针对这一问题也展开了深入研究. 文献[14]针对模型参数部分未知的连续时间非线性系统, 提出了一种基于多层神经网络的近似最优跟踪控制器设计方法, 先使用神经网络辨识系统模型, 再分别设计反馈神经控制器和前馈神经控制器, 使得系统可以较好的跟踪参考输入, 不过该方法使系统输出和控制输入在初始时刻会产生较大的震荡. 为了抑制这种震荡, 文献[15-16]设计了一种新型性能指标, 并提出了一种启发式动态规划方法, 不仅减小了系统输出和控制输入的波动, 还获得了更好的跟踪性能. 文献[17-19]针对模型参数未知的连续时间非线性系统, 提出了一种数据驱动的自适应动态规划方法, 先利用递归神经网络建立数据驱动模型, 在该模型的基础上设计了基于自适应动态规划的近似最优跟踪控制器, 使得系统状态输出能够渐近跟踪期望轨迹. 毫无疑问, 上述研究工作推动了最优跟踪控制方法的进一步发展与应用, 丰富了跟踪控制的研究内容.

 

实际系统往往具有多变量和强耦合特性, 上述跟踪控制方法没有考虑到多变量系统中可能存在的强耦合特性, 无法保证系统的整体性能最优. 本文针对一类具有强耦合特性的离散时间线性多变量系统, 提出了一种具有解耦性能的最优跟踪控制方法. 首先将耦合项看作可测干扰, 基于零和博弈思想设计一个由系统跟踪误差、控制输入和耦合干扰补偿构成的性能指标; 然后通过最小化这个新的性能指标, 得到最优跟踪控制律, 并给出了加权矩阵的选择方法, 证明了通过该加权矩阵的选择, 一方面可以动态解耦闭环系统并使其稳定, 另一方面可使闭环系统的状态完全跟踪参考输入; 最后进行了仿真对比实验, 实验结果表明与传统的LQT控制器相比, 该方法无论在跟踪误差还是在系统的整体性能方面都具有一定的优越性.
具有解耦性能的离散时间线性多变量系统最优跟踪控制
  本文所提方法系统状态输出

具有解耦性能的离散时间线性多变量系统最优跟踪控制

  本文所提方法控制输入

具有解耦性能的离散时间线性多变量系统最优跟踪控制

  1组参数下, 2策略的最优性能比较

 

针对一类具有强耦合特性的离散时间线性多变量系统, 本文提出了一种具有解耦性能的最优跟踪控制方法. 该方法受到二人零和博弈思想的启发, 设计了新的性能指标, 并根据极小值原理最小化该性能指标, 得到最优跟踪控制律. 按照本文给出的加权矩阵选择办法, 消除了不同控制回路之间的耦合影响, 使得系统的状态输出可以跟踪任意期望轨迹. 仿真实验表明, 当离散时间线性多变量系统具有强耦合特性时, 该方法可以获得更小的控制输入和更小的最优性能, 并且系统达到稳态时, 系统输出总能完全跟踪参考输入. 在接下来的研究中, 将进一步考虑系统模型部分未知的情况, 将自适应动态规划算法与本文解耦控制方法相结合, 设计近似最优跟踪控制器, 进而实现具有模型不确定性和强耦合特性的线性多变量系统的最优跟踪控制.

 

作者简介

 

富月

东北大学流程工业综合自动化国家重点实验室副教授. 2009年获得东北大学控制理论与控制工程专业博士学位. 主要研究方向为复杂工业过程自适应控制, 智能解耦控制, 近似动态规划以及工业过程运行控制. 本文通信作者.E-mail: fuyue@mail.neu.edu.cn

 

陈威

天辰工程有限公司工程师. 分别于2018 年获得河北工业大学学士学位, 2021年获得东北大学硕士学位. 主要研究方向为解耦控制和最优控制.E-mail: chenwei0323@126.com

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有