标签:
校园生活科技创新诺贝尔奖 |
分类: 新闻看板 |
http://cimg2.163.com/cnews/2007/10/11/20071011125803ad0d0.jpg
瑞典皇家科学院10日宣布,将今年的诺贝尔化学奖授予格哈德·埃特尔,以表彰他在“固体表面的化学过程”研究中取得的成果。皇家科学院的新闻公报说:“今年的化学奖授予在表面化学方面的开创性研究。这一学科对于化学工业而言非常重要,而且能够帮助我们理解铁为什么会生锈、燃料电池如何工作、汽车里的催化剂如何工作。”
物质的两相之间密切接触的过渡区称为界面,若其中一相为气体,这种界面通常称为表面。在相界面上所发生的一切物理化学现象统称为界面现象或表面现象,而研究各种表面现象实质的科学称为表面化学。
表面化学在上世纪前半叶得到迅猛发展,大量的研究成果被广泛应用于涂料、建材、冶金、能源等行业。20世纪60年代末起,表面化学开始成为一项独立的基础学科。埃特尔则是最早洞察到表面化学研究巨大潜力的科学家之一,不仅奠定了表面化学研究的方法论,更在诸多实际应用领域获得了重要研究成果。
人们早就知道,氮肥对于农业生产而言具有举足轻重的作用。20世纪初发展而来的哈伯-博施法使得将大气中的氮制成氨成为可能,但人们在寻找制备反应的催化剂方面苦无收获。而埃特尔的研究发现,氨的合成反应在铁催化剂表面进行时效率大大提高,使这一技术的产业化成为现实,这给人类社会的农业生产带来了巨大的经济效益。
此外,汽车排放出的尾气中含有大量一氧化碳,如果不加净化则会对人类生活造成危害。埃特尔有关一氧化碳在金属铂表面的氧化过程的研究,催生了汽车尾气净化装置。
埃特尔甚至还成立了一个专门的学校,来传授他开创的各类精妙的试验技巧与丰富的经验。
正如瑞典皇家科学院所说,“埃特尔的方法论既被用于学院里的研究,也被用于工业生产中的化学过程。”这位科学大师用他的睿智与勤勉,做出了一篇福泽人类的“表面文章”。
【得主小传】格哈德·埃特尔于1936年10月10日生于德国斯图加特,大学生涯在慕尼黑技术大学度过,并于1965年获博士学位。从1973年开始,埃特尔担任路德维希—马克西米利安大学教授及该校物理化学研究所所长。1986年至2004年,埃特尔出任德国马普学会弗里茨—哈伯研究所所长,目前他是这家研究所的名誉教授。埃特尔是1988年以后获得诺贝尔化学奖的首位德国人。
【获奖感言】瑞典皇家科学院10月10日宣布,德国科学家格哈德·埃特尔获得2007年诺贝尔化学奖。当天恰逢71岁生日的埃特尔说,这是一份“最好的生日礼物”。
2.物理学
http://cimg2.163.com/cnews/2007/10/9/20071009182454d3d9e.jpg
http://cimg2.163.com/cnews/2007/10/9/200710091825092bca6.jpg
这两名科学家获奖的原因是先后独立发现了“巨磁电阻”效应。所谓“巨磁电阻”效应,是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。根据这一效应开发的小型大容量计算机硬盘已得到广泛应用。
瑞典皇家科学院在评价这项成就时表示,今年的诺贝尔物理学奖主要奖励“用于读取硬盘数据的技术”。这项技术被认为是“前途广阔的纳米技术领域的首批实际应用之一”。
【得主小传】这两位科学家都比较喜欢音乐。费尔最喜欢的乐手是美国爵士乐钢琴家塞罗尼斯·蒙克,而格林贝格尔对古典音乐十分痴迷,他还是一名吉他爱好者。
费尔1938年3月出生于法国南部小城卡尔卡索纳,1970年在南巴黎大学获博士学位,1976年开始担任南巴黎大学教授。自1995年以来,费尔还一直担任法国国家科研中心与法国泰雷兹集团组建的联合物理实验室科学主管。费尔于2004年当选法国科学院院士。
格林贝格尔1939年出生于比尔森,1969年在达姆施塔特技术大学获博士学位,1972年开始担任德国于利希研究中心教授,2004年退休。
格林贝格尔的知识产权保护意识比较强。两位科学家1988年发现“巨磁电阻”效应时意识到,这一发现可能产生巨大影响。格林贝格尔为此还申请了专利。
目前,根据这一效应开发的小型大容量电脑硬盘已得到广泛
【获奖感言】阿尔贝·费尔在接受电话采访时说:“我受宠若惊,非常感动,我为能够与彼得·格林贝格尔共享这一奖项而兴奋不已。我们刚刚交谈过。我们总是很好地交换我们的研究结果。”
彼得·格林贝格尔在接受瑞典电台采访时说:“有人告诉我,如果有从斯德哥尔摩来的电话,那只能是诺贝尔奖(通知)。”他说,“正有一大群人站在我门外”,他打算跟他们“来一杯香槟”。
【链接】巨磁电阻效应引发硬盘的“大容量小型化”革命
体积越来越小,容量越来越大——在如今这个信息时代,存储信息的硬盘自然而然被人们寄予了这样的期待。得益于“巨磁电阻”效应这一重大发现,最近20多年来,我们开始能够在笔记本电脑、音乐播放器等所安装的越来越小的硬盘中存储海量信息。
瑞典皇家科学院9日宣布,将2007年诺贝尔物理学奖授予法国科学家阿尔贝·费尔和德国科学家彼得·格林贝格尔,以表彰他们发现了“巨磁电阻”效应。瑞典皇家科学院说:“今年的物理学奖授予用于读取硬盘数据的技术,得益于这项技术,硬盘在近年来迅速变得越来越小。”
通常说的硬盘也被称为磁盘,这是因为在硬盘中是利用磁介质来存储信息的。一般而言,在密封的硬盘内腔中有若干个磁盘片,磁盘片的每一面都被以转轴为轴心、以一定的磁密度为间隔划分成多个磁道,每个磁道又进而被划分为若干个扇区。磁盘片的每个磁盘面都相应有一个数据读出头。
简单地说,当数据读出头“扫描”过磁盘面的各个区域时,各个区域中记录的不同磁信号就被转换成电信号,电信号的变化进而被表达为“0”和“1”,成为所有信息的原始“译码”。
伴随着信息数字化的大潮,人们开始寻求不断缩小硬盘体积同时提高硬盘容量的技术。1988年,费尔和格林贝格尔各自独立发现了“巨磁电阻”效应,也就是说,非常弱小的磁性变化就能导致巨大电阻变化的特殊效应。
这一发现解决了制造大容量小硬盘最棘手的问题:当硬盘体积不断变小,容量却不断变大时,势必要求磁盘上每一个被划分出来的独立区域越来越小,这些区域所记录的磁信号也就越来越弱。借助“巨磁电阻”效应,人们才得以制造出更加灵敏的数据读出头,使越来越弱的磁信号依然能够被清晰读出,并且转换成清晰的电流变化。
1997年,第一个基于“巨磁电阻”效应的数据读出头问世,并很快引发了硬盘的“大容量、小型化”革命。如今,笔记本电脑、音乐播放器等各类数码电子产品中所装备的硬盘,基本上都应用了“巨磁电阻”效应,这一技术已然成为新的标准。
瑞典皇家科学院的公报介绍说,另外一项发明于上世纪70年代的技术,即制造不同材料的超薄层的技术,使得人们有望制造出只有几个原子厚度的薄层结构。由于数据读出头是由多层不同材料薄膜构成的结构,因而只要在“巨磁电阻”效应依然起作用的尺度范围内,科学家未来将能够进一步缩小硬盘体积,提高硬盘容量。
3.生理学或医学

瑞典皇家科学院诺贝尔奖委员会宣布将2007年度诺贝尔生理学或医学奖授予美国科学家马里奥-卡佩奇和奥利弗-史密西斯、英国科学家马丁-埃文斯,以表彰他们在干细胞研究方面所作的贡献。
这三位科学家是因为“在涉及胚胎干细胞和哺乳动物DNA重组方面的一系列突破性发现”而获得这一殊荣的。这些发现导致了一种通常被人们称为“基因打靶”的强大技术。这一国际小组通过利用胚胎干细胞在老鼠身上引入特定基因修饰。
卡佩西出生于意大利,他现在是美国公民,埃文斯和史密西斯都出生在英国,埃文斯是英国人,史密西斯目前是美国公民。三位科学家将分享1000万瑞典克朗(约合154万美元)的奖金。
【得主小传】卡佩基1937年出生在意大利,后获得美国国籍。卡佩基1967年获美国哈佛大学生物物理学博士学位,他除了在霍华德·休斯医学研究所工作外,还担任犹他大学人类遗传学和生物学教授。卡佩基因在“基因靶向”技术的研究上做出了开创性工作而成名。
史密斯1925年出生在英国,后获得美国国籍。史密斯1951年获得牛津大学生物化学博士学位,如今在美国北卡罗来纳大学工作。他一开始主要进行胰岛素的研究工作,后转入分子生物学领域。在差不多60岁时,他开发出了可关闭活体内特定基因的技术。史密斯和卡佩基几乎同时对“基因靶向”技术做出了奠基性贡献,这一技术使得科学家能培育出拥有特定变异基因的小鼠。
埃文斯1941年出生在英国,1963年从剑桥大学毕业后,进入伦敦大学学院学习,获得解剖学和胚胎学博士学位。1978年,他返回剑桥大学工作。3年后,他和同事从小鼠胚胎中第一次成功分离出未分化的胚胎干细胞。这为“基因靶向”技术提供了施展本领的空间。如今,埃文斯在英国加的夫大学担任哺乳动物遗传学教授。
【获奖感言】在接受媒体采访时,卡佩基说,诺贝尔奖评审委员会打电话时,是(美国当地时间)凌晨3点,自己睡意正浓。他说:“打电话那个人非常严肃,因此我的第一反应是,这一定是真的。”
史密斯对获奖“非常满意”。他表示,进行基因研究20多年后,相当高兴能“在这一水平上(诺贝尔奖)得到认可”。
埃文斯说,这是自己“职业生涯的最高荣誉”。知道获奖消息后,他打算改变周一的原定计划,好好庆祝一下。他原计划周一为女儿打扫房间。
【链接】瞄准疾病的利器——基因靶向技术
自古以来,狙击手在战场上的作用一直不可忽视。精准是对狙击手的根本要求,而瞄准镜是狙击手的最好帮手。在现代医学领域,如果把科学家比作搜索致病基因的狙击手,那么“基因靶向”技术就是他们的瞄准镜。
正是由于在研究“基因靶向”技术方面获得重大成果,两位美国科学家和一位英国科学家分享了2007年的诺贝尔生理学或医学奖。
所谓“基因靶向”技术是指利用细胞脱氧核糖核酸(DNA)可与外源性DNA同源序列发生同源重组的性质,定向改造生物某一基因的技术。借助这一从上世纪80年代发展起来的技术,人们得以按照预先设计的方式对生物遗传信息进行精细改造。
有了“基因靶向”这一强大的武器,人们就可以瞄准某一特定基因,使其失去活性,进而研究该特定基因的功能。打个比方来说,使用“基因靶向”这具高精度瞄准镜,科学家们就能够精确瞄准任何一个基因,并对它进行深入研究。
尽管“基因靶向”技术刚刚诞生20余年,全世界的科学家已经利用该技术先后对小鼠的上万个基因进行了精确研究。根据导致人类疾病的各种基因缺陷,科学家培育了超过500种存在不同基因变异的小鼠,这些变异小鼠对应的人类疾病包括心血管疾病、神经病变,糖尿病和癌症等。
诺贝尔奖评审委员会在新闻公报中说:“今年的奖项所涉及的发现引领人们掌握了一个无比强大的研究武器:小鼠的‘基因靶向’研究技术。它如今已经被应用在生物医学所有领域。”
新闻公报说:“从长远看,‘基因靶向’技术对人类在理解基因功能方面将带来持续而深远的影响,并且不断造福人类。”