加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

《小学数学思想方法的教学实践研究》开题报告

(2018-01-08 19:03:47)
分类: 微课题研究

海门市教育科学规划微课题研究

 

 

小学数学思想方法的教学实践研究

 

 

 

 

 

 

 

 

海门市实验小学   沙晔

二○一八年一月

 


海门市教育科学规划微课题研究

小学数学思想方法的教学实践研究

开题报告

承担单位:海门市实验小学   主持人:沙晔

 

一、问题的提出及研究意义

《义务教育数学课程标准》前言中指出,数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养,只有找到人发展的核心素养体系,才能解决有限与无限的矛盾,为学生未来发展预留足够的空间,这里所说的核心素养,即学生应具备的适应终身发展和社会发展需要的必备品质和关键能力。数学课程标准(2011版)指出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。具体阐述为:学生要“学会独立思考,体会数学的基本思想和思维方式”。强调课程内容“不仅要包括数学的结果,也包括数学结果形成和蕴含的数学思想方法”,还指出:数学教学教学活动中要能“使学生体会和运用数学思想方法,获得基本的数学活动经验”。学生核心素养的达成,离不开相关学科的核心素养的达成,相关学科的素养达成,离不开学科日常教学活动。 “数学教育主要应当促使学生更为积极地去进行思考,并能通过数学学习学会思维,特别是,即能逐步学会想得更深、更合理、更清晰,更全面。”正如郑毓信教授所说,学生数学素养的核心是数学思维,学生的数学思维离不开数学思想方法,数学的思想方法离不开数学的基础知识,因而,如何在日常教学中关注数学的核心——数学思想方法,让我们一线的教师思索着,如何在教学中实践数学思想方法是我们研究这个课题的根本动力之一。

对于小学中数学思想方法的教学实践研究,人们早已开始研究,侧重点在于有哪些数学思想方法,这些数学思想方法的教学可以带来哪些好处,有哪些意义等。但是长期以来,由于对数学教学效果的评价总是围绕着对“显性知识”的掌握而展开的,看学生是否记住了数学公式、概念、定理等等,是否会用某种方法解题,是否会用某种规则进行运算、推理,并把这些作为考试、考察的基本指标,许多教师的数学教学变成了单纯的“解题教学”,相对削弱了对学生“数学思想方法”的有效考察,影响了学生的数学能力和数学智能的均衡发展。

近一段时期以来,小学阶段对于数学思想方法在教学中的渗透已开始受到重视,而随着课程改革的不断深入,在小学数学教学实践中有意识地向学生渗透一些基本数学思想方法也开始成为当前数学教学的重点之一,(全日制义务教育数学课程标准(实验稿)》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”因此,在小学阶段有意识地向学生实施基本数学思想方法的教学实践可以加深学生对数学概念、公式、定理、定律的理解,是提高学生数学能力和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学教学进行素质教育的真正内涵之所在。但是在界定和刻画适于义务教育阶段学生领悟和掌握的数学思想方法方面,多注重整体上如何渗透各类数学思想,而如何细致地分阶段去研究和实践数学思想方法、数学思想方法,不同阶段渗透的程度怎样,如何渗透等所积累的研究成果却还不够充分。

本课题研究的意义在于:通过研究,立足于教师素养的提升:通过数学思想方法文史文献研究,深入了解小学阶段重点渗透的数学思想方法类型和数学教学中渗透数学思想方法的教育价值和功能,帮助教师充分认识到有效渗透数学思想方法的重要性;积极探索小学阶段渗透数学思想方法的基本策略,总结出一套可供推广和应用的实践样本和课例;提升教师的教科研水平。立足于学生的素养积淀:培养学生形成良好的数学素养,养成良好的用数学眼光看待和分析问题的习惯和能力。

二、课题的核心概念及其界定

数学思想:沈文选教授在《数学思想领悟》中认为,数学思想是是教学内容的精髓,是知识转化为能力的桥梁,是使学习者在处理数学问题时又思又想:由思激疑、在思疑中启悟;由想反思,在思辨中省悟;由思导验、在体验中领悟;认识在启悟中升华、思维在省悟中开拓、能力在领悟中形成。数学思想的领悟是一种高尚的数学享受,是有益心智的精神漫步……数学思想是数学中处理问题的基本观点,是数学基础知识与基本方法本质的概括,是其精神实质和理论根据,是创造性地发现数学的指导方针。

数学思想方法:南京大学郑毓信教授认为,数学思想具有两种意义,“第一种意义上的数学思想的一个重要特征即是其从属于具体的数学知识”;第二种意义上的数学思想“则是指与具体数学内容相分离,并具有更大普遍意义的思维模式或原则”。而且,“由于第二种意义上的数学思想具有较强的方法论意义,因此被称为‘数学思想方法’(或‘数学思维方法’)”。思想方法的具体表现:福建师范大学李祎教授从思维的视角,将数学思想方法细分如下:(1)观察与实验;(2)类比与猜想;(3)归纳与演绎;(4)分析与综合;(5)抽象与概括;(6)特殊化与一般化;(7)比较与分类。郑毓信教授指出,小学最基本的一些数学思想和思想方法如下:(1)分类与抽象;(2)类比与归纳;(3)特殊化、一般化与化归;(4)“寓理于算”与算法化思想;(5)形象思维与“数形结合”;(6)逆向思维与逻辑思维;(7)整体化思维与“序”的把握;(8)多元化与“优化的思想”;(9)建模与数学化的思想。

小学数学思想方法:小学教学领域内,数学思想就是指对数学知识和方法的本质及规律的理性认识,它是解决数学问题的灵魂和根本策略。而数学方法则是数学思想的具体体现形式,是实现数学思想的手段和重要工具.运用数学方法解决问题的过程就是感性认识不断积累的过程,当这积累达到一定的程度时就会产生飞跃,从而上升为数学思想。

教学实践:就是在数学教学过程中,努力依托课堂教学活动,在数学基础知识教学的同时,适时有效渗透和展开数学思想方法的教学,积极引导学生通过讨论、思考、交流、实践等丰富的活动过程,积极经历数学知识的形成过程,探寻获得不同数学基础知识的方法的共性,体会数学学习中的内在联系,促进学生自我建构数学知识,更好感知隐藏在知识里的思想方法。

三、国内外研究现状述评

许多发达国家在数学教学中非常重视让学生掌握基本的数学思想方法,美国将“学会数学思想方法”作为“有效数学素养”的标志。俄罗斯把使学生形成数学思想方法列为数学教育的三大基本任务之一。美国教育心理学家布鲁纳指出:掌握基本的数学思想和方法,能使数学更易于理解和记忆,领回基本的数学思想方法是通向迁移达道的“光明之路”。正如日本数学史家米山国臧所指出:“不管他们(学生)从事什么业务工作,唯有深深地铭记于头脑中的数学精神、数学思维方法、研究方法、推理方法和着眼点等,都随时地发生作用,使他们终身受益”。

国内在初中和高中对此类问题有了较为深入的研究,且成果显著。许多专家教授们也针对数学思想方法的教学及概念等发表了自己的观点,但是也较多的体现为理论层面的研究。特级教师林碧珍指出:在小学教学领域内,数学思想是指人们对数学内容的本质认识,是从某些数学认识过程中提炼出的一些观点,是能够揭示数学发展中普遍的规律,直接支配着数学实践活动、对数学规律的理性认识。数学思想比数学知识具有更高的概括水平,是基础知识的灵魂,是提高学生数学能力和思维品质的重要手段,也是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要思维活动,是提高数学素养的关键。沈文选教授在《数学思想领悟》中指出:数学思想是数学科学的灵魂,是数学科学赖以发展的重要因素。富有思想的课堂就是在引领学生学习数学知识的过程中适时、科学有效地渗透数学思想的课堂,是真正对学生以后的学习、生活和工作长期起作用,并使学生终生受益的课堂,是为学生的终身学习和发展奠定坚实基础的课堂。

史宁中教授在义务教育数学课程标准(2011年版)解读中这样说到:《课程标准(2011年版)》中所说的“数学的基本思想”主要指:数学抽象的思想、数学推理的思想、数学建模的思想。在用数学思想解决具体问题时,会逐渐形成程序化的操作,就构成了“数学思想方法”。数学思想方法也是具有层次的,处于较高层次的可以称为“数学的基本方法”。数学的基本方法有:演绎推理的方法,合情推理的方法,变量替换的方法,等价变形的方法,分类讨论的方法,等等。下一层次的方法,也有很多:分析法,综合法,穷举法,反证法,待定系数法,数学归纳法,递推法,消元法,降冥法,换元法,配方法,列表法,图像法,等等。数学方法不同于数学思想。“数学思想”往往是观念的、全面的、普遍的、深刻的、一般的、内在的、概括的;而“数学方法”往往是操作的、局部的、特殊的、表象的、具体的、程序的、技巧的。数学思想常常通过数学方法去体现;数学方法又常常反映某种数学思想。数学思想是数学教学的核心和精髓,教师在讲授数学方法时应该尽力反映和体现数学思想,让学生了解和体会数学思想,提高学生的数学素养。

人民教育出版社蔡上鹤编审认为,“所谓数学思想,是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实和数学理论的本质认识”。而且,“数学思想、数学观点、数学方法三者密不可分:如果人们站在某个位置、从某个角度并运用数学去观察和思考问题,那么数学思想也就成了一种观点。而数学方法则是实施有关思想的技术手段”。此外,“数学思想也是一类科学思想,但科学思想未必就单单是数学思想。分类是各门学科都要运用的思想(如,物理学可分为力学、热学、声学、光学和原子核物理学,化学可分为无机化学和有机化学等等),但只有将分类思想应用于空间形式和数量关系时,它才能成为数学思想”。

小学课程标准专家组的专家对于小学数学思想方法作出了详尽的解读,对思想方法教学实践的优势方面作出了很好的说明。类似的课题及案例,侧重于对数学思想方法理论层面的解读较多,实践层面可操作性的解读较少,更多的只是停留在表象层面。在实践层面的实施策略的研究也不多,深入进行个案研究的也不多。

四、研究的目标、内容(或子课题设计)、假设和重点难点

目标:

1.小学数学思想方法的实践研究,是为了更好的让教师通过研读课程教材,从整体上把握教材的数学思想方法的编排体系,注重引导、渗透可利用资源,让学生感悟、领会数学思想方法的内涵,提高教师的教学素养水平。

2.小学数学思想方法的教学实践研究,探讨总结数学思想方法课堂渗透有效性的途经和方法,探索并具体掌握第一学段和第二学段渗透数学思想方法的教学策略。

3.小学数学思想方法的教学实践研究,为了更好的有机地将其与基本活动经验、基础知识及基本技能相结合,培养学生的综合数学素养,帮助学生学会数学思维,提升学生解决实际问题的能力。

4.小学数学思想方法的教学实践研究,是提高教师科研水平载体,促进教师专业成长,提升学校整体的教科研的水平的有效途经之一。

内容:

1.小学数学思想方法的教学实践现状分析

小学数学思想方法是数学教学的精髓,教师在日常教学中都注重联系数学基础知识研究进行着有机的教学实践,但是由于受到时间的限制及教育教学任务的制约,往往存在着因为时间紧迫,在不经意间存在着被挤掉的现象,或者即使出现,也是蜻蜓点水式一带而过,没有给孩子留下深刻的印象。数学思想方法的教学实践缺乏系统的理论支撑,对于一线教师而言,这种教学实践在实施中存在着一定的随意性。

2.小学数学思想方法教学实践的实施策略归类

数学思想方法,在“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”等不同模块的教学实践中,均能寻觅到其具体的体现,但在不同学段的教学实施过程中,所把握的思想方法教学实践的“度”应该是有所区别,思想方法的教学实施在实践中进行着丰富的尝试,并适时加以总结且进行适时的归类。让思想方法的教学实践在不同内容、不同阶段呈现着不同的实施策略。

3.小学数学教学中数学思想方法教学的教育价值和功能分析

通过对教材的课例分析比较和数学思想方法的内涵的探索研究,从教育哲学的层面深入了解小学数学教学中数学思想方法教学的重要性及必要性,具体分析数学思想方法在儿童数学学习中不可或缺的价值与功能,突出数学思想方法教学对于学生核心素养提升的教育意义。

4.小学数学思想方法教学实践的教学个案呈现

分学段、分类型探索研究小学数学教学中进行思想方法的教学个案实践。一方面通过第一学段、第二学段两个不同的学段研究进行数学思想方法的个案教学实践,探索基本的教学模式,根据实践中所产生的问题及经验,及时进行反思与总结;另一方面从基本的数学思想方法类型出发,如数学抽象思想、数学推理思想、数学建模思想等探索渗透的教学策略,开发一些适合第一、二学段儿童的渗透数学思想方法的数学课程资源,积累并形成有借鉴价值的案例和课例。

重点:

分学段、分类型探索研究小学数学教学中进行思想方法的教学实践。首先研读第一、第二阶段的教材、义务教育数学课程标准(2011版)、教材及课程标准的配套读本,分别从分学段的角度以及思想方法类型的角度进行数学思想方法教学的实践探索,力争通过教学实践,能够总结出一些数学思想方法教学的实践经验。

五、研究的思路、过程、理论基础与方法

研究的思路:

结合日常教学活动中所积累的对于数学思想方法的教学实践的思考,结合数学思想方法方面系统理论知识的学习,从而系统的掌握数学思想方法的知识框架结构,以便更好的有的放矢的开展针对性的数学思想方法的教学实践研究。着重关注第一学段、第二学段儿童数学学习心理规律和思维的阶段特征,筛选典型数学教学内容,积极进行课堂教学实践研究,努力钻研课例,积极参与展示和评比,多渠道开拓教学实践的途经,创造机会,借助各种展示的平台,开展专家引领、同课异构、同行磨课等方式,积极进行数学思想方法教学实践的有益探索。围绕数学思想方法的教学实践研究主题,经常组织开展教学沙龙活动、读书活动、撰写活动反思、开展经验交流会等,及时进行经验总结,邀请专家针对研究内容及过程进行把脉,积极采纳专家给出的建议,及时修正研究方向及措施,积极推广研究成果。

方法:

1.行动研究法  借助课堂实例,寻找问题、行为改进、总结分享这一过程,探索研究数学思想渗透的教学实践策略,积累教育教学经验,边学习、边实践、边总结,及时反思,提炼经验。从教学实践的角度界定 “数学思想”、“数学思想方法”、“数学思维”等概念的涵义,理清它们之间的相互联系与区别。

2.经验总结法  对实验中出现的成功经验和失败教训及时进行总结,定期召开论文交流与评比、案例分析与讨论及教学实践系列研讨活动,请专家对这些经验予以鉴定分析,成果及时推广。

3.个案研究法  针对研究过程中的典型性案例,进行深入的发掘和剖析,适时开展同课异构实践活动,以及针对某一思想方法在不同的阶段的意识体现,并从中摸索小学数学思想方法的教学实践模式。

过程:

第一阶段:准备阶段(20179月——201712月)

1.确立课题,收集、查阅有关的文献资料,组成该课题研究团队,确定研究目标、内容、措施、办法,拟写课题研究方案。(全体课题组人员)

2.了解整个小学阶段有哪些数学思想方法。收集16年级教材中主要渗透了哪些数学思想方法,并分别整理成册。

第二阶段研究阶段(20181月至20187月)

1.组织课题组成员进行数学思想方法理论学习,分学段进行梳理并形成体系,同时要求写对数学思想方法的整理、分析的报告或论文。

2.以课堂教学为研究平台,课题组成员在实践中有意识的渗透数学思想方法,形成典型案例。

3.举办和参与课堂研究有关的讲座

第三阶段  总结阶段(20187月至20189月)

1.收集各课题成员的研究材料,做好归纳整理,写出课题结题报告,总结、研究值得推广的经验和收获,将研究成果整理成文、装订成册。

六、主要观点与可能的创新之处

1.深入剖析小学数学教学中思想方法教学的现状。深入剖析教学现状,认识到现实教学实践中思想方法教学的不足,有助于研究者在教学中更有效的面对数学思想方法教学实践的现状,有的放矢的开展教学实践研究,让本课题的研究更贴近实际需要。

2.在实践研究中归纳出小学数学思想方法教学实践策略。小学数学思想方法的教学实施需要一定的策略,这些教学实施的策略有哪些,怎样进行实施,实施的程度如何,实施过程中需要关注些什么等等,这些都需要我们在研究过程中进行系统的,分阶段、分项目的摸索,并及时进行总结,及时予以推广。

3.有目的的进行数学思想方法的教学个案呈现。数学思想方法是数学的精髓,数学思想方法蕴含于数学知识中,围绕个案开展数学思想方法实践研究,探索在知识的获得过程中如何蕴育丰富的数学思想方法,如何让学生数学知识学习的同时进行数学思想和方法的感悟,引导学生透过数学知识,感知数学思想方法,领悟深层次的数学学习,提升学生的数学素养,不断重复着数学思想方法的教学实践,让学生在学习中感悟思想,感悟数学知识的共性,接受思想方法的熏陶,形成了丰富的思想方法意识。

综上所述,在小学数学思想方法的教学实践中深入剖析数学思想方法的教学现状,在实践中探索并归纳小学数学思想方法的实践策略,深入开展小学数学思想方法的教学个案呈现,进行个案的实践研究,等等这些,是可能的创新之处。

七、研究进度与预期成果

 

成果名称

成果形式

完成时间

阶段成果

可行性研究方案

开题报告

20181

课例实践研究

实践课例

20187

专题论文、经验(若干)

论文

20184

最终成果

《小学数学思想方法的教学实践研究》可行性研究方案

开题报告

20181

《小学数学思想方法的教学实践研究》典型案例等研究

案例或论文集

20187

《小学数学思想方法的教学实践研究》研究报告

结题报告

20189

 

八、研究基础、参考文献与保障条件

课题主持人为海门市实验小学四年级数学教研组长,参加过江苏省规划课题研究,具有较为丰富的课题研究经验。参与者中有两位老师有着丰富的教学实践经验,也曾参与过相关课题的研究,在省市级刊物发表论文多篇及论文比赛中多次获奖,具有一定的理论研究与实践操作水平。参与课题研究的老师,均长期在数学教学的一线开展教学工作,有着丰富的教学实践经验,对于日常教学中的关于“数学思想方法”的教学也多次进行过实践探索和思考,也已经初步的撰写了一些经验性的总结,只是这些想法还只是自我的认识,缺少了一些理论思想的指引,没有形成较为系统的认识,也没有进行系统深入的实践研究。学校一贯以来重视科研发展学校,以各种强有力的政策和经费支持教师投身教育科研,学校科研氛围十分浓厚,造就了一批教科研骨干。学校在研究资料的获得、研究经费的筹措、研究时间的保障等方面有着得天独厚的有力条件,这些都为课题研究提供了有力的支持。

九、参与人员及人员分工

姓名

工作单位

专业技术职务

研究专长

课题中的分工

沙晔

海门市实验小学

中小学一级教师

数学教学

开、结题报告

李建英

海门市实验小学

中小学一级教师

数学教学

案例研究

顾斌

海门市实验小学

中小学一级教师

数学教学

案例研究

 

 

在课题的撰写中,主要参考了一下文献:

1.《义务教育数学课程标准》(2011年版)北京师范大学出版集团

2.《给小学数学教师的46条建议》福建教育出版社  林碧霞 朱坤震著

3. 《义务教育数学课程标准(2011年版)解读》北师大出版集团  史宁中编

4.《小学数学概念与思维教学》江苏凤凰教育出版社   郑毓信著

5.《小学数学课程标准研究与实践》 江苏教育出版社  王林等 著

6.《数学的精神、思想和方法》 四川教育出版社  1986 【日】米山国藏  毛正中等译

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有