加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

为什么自己使用SVR做预测效果很差

(2013-03-24 23:14:26)
标签:

svr

it

分类: SVM
以下部分是摘自FARUTO的新浪博客的原文


这个最有技术含量了,因为总有朋友说用libsvm做分类或者回归效果不好,我说把数据给我试一下,结果我做的效果一般都会比其要好,为啥捏?这里先简单说一点点:使用libsvm(SVM)不是简简单单的用svmtrain输入几个参数 -c -g 生成model后用svmpredict来分类或者回归,其实更重要的是前期的数据预处理和后期的参数选择(归一化范围的选取,降维算法的选取,以及最佳参数选取的算法)这些才是关键,其实说白了如果这些您都搞得很透彻的话,选择其他分类器也能做好,即这些(前期的数据预处理和后期的参数选择)做好了,选择神马分类器真的并不重要,在
libsvm-mat-2.89-3[FarutoUltimate3.0]工具箱中我把常见的数据预处理方法(归一化,降维pca)和参数选择算法(grid search 暴力搜索方法,启发式GA、PSO方法)都封装好了方便大家使用,同样是用这个加强工具箱,但对于同一个测试数据集合,我敢保证肯定会有人用的效果就没有我的好,为啥捏?因为知其然不知其所以然!肯定是其仅仅是了解一些表象的使用,而对于底层到底是怎么回事没有搞清楚,这样在具体的参数调整上肯定是不行的,这也回答之前的“为什么总有朋友说用libsvm做分类或者回归效果不好,我说把数据给我试一下,结果我做的效果一般都会比其要好”的原因。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有