加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

小学应用题解题方法之三十三---最小公倍数法

(2010-11-13 21:05:46)
标签:

最小公倍数

六年级

响铃

适于

正方体

教育

分类: 边走边拾
三十三、最小公倍数法

 

 

原文网址:http://hi.baidu.com/talenty/home

 

通过计算出几个数的最小公倍数,从而解答出问题的解题方法叫做最小公倍数法。

 

 

1 用长36厘米,宽24厘米的长方形瓷砖铺一个正方形地面,最少需要多少块瓷砖?(适于六年级程度)

解:因为求这个正方形地面所需要的长方形瓷砖最少,所以正方形的边长应是36、24的最小公倍数。

http://www.sumir.cn/image/557.gif

2×2×3×3×2=72

36、24的最小公倍数是72,即正方形的边长是72厘米。

72÷36=2

72÷24=3

2×3=6(块)

答:最少需要6块瓷砖。

 

*例2 王光用长6厘米、宽4厘米、高3厘米的长方体木块拼最小的正方体模型。这个正方体模型的体积是多大?用多少块上面那样的长方体木块?(适于六年级程度)

解:此题应先求正方体模型的棱长,这个棱长就是6、4和3的最小公倍数。

http://www.sumir.cn/image/558.gif

2×3×2=12

6、4和3的最小公倍数是12,即正方体模型的棱长是12厘米。

正方体模型的体积为:

12×12×12=1728(立方厘米)

长方体木块的块数是:

1728÷(6×4×3)

=1728÷72

=24(块)

答略。

3 有一个不足50人的班级,每12人分为一组余1人,每16人分为一组也余1人。这个班级有多少人?(适于六年级程度)

解:这个班的学生每12人分为一组余1人,每16人分为一组也余1人,这说明这个班的人数比12与16的公倍数(50以内)多1人。所以先求12与16的最小公倍数。

http://www.sumir.cn/image/559.gif

2×2×3×4=48

12与16的最小公倍数是48。

48+1=49(人)

49<50,正好符合题中全班不足50人的要求。

答:这个班有49人。

 

4 某公共汽车站有三条线路通往不同的地方。第一条线路每隔8分钟发一次车;第二条线路每隔10分钟发一次车;第三条线路每隔12分钟发一次车。三条线路的汽车在同一时间发车以后,至少再经过多少分钟又在同一时间发车?(适于六年级程度)

解:求三条线路的汽车在同一时间发车以后,至少再经过多少分钟又在同一时间发车,就是要求出三条线路汽车发车时间间隔的最小公倍数,即8、10、12的最小公倍数。

http://www.sumir.cn/image/560.gif

2×2×2×5×3=120

答:至少经过120分钟又在同一时间发车。

 

5 有一筐鸡蛋,4个4个地数余2个,5个5个地数余3个,6个6个地数余4个。这筐鸡蛋最少有多少个?(适于六年级程度)

解:从题中的已知条件可以看出.不论是4个4个地数,还是5个5个地数、6个6个地数,筐中的鸡蛋数都是只差2个就正好是能被4、5、6整除的数。因为要求这筐鸡蛋最少是多少个,所以求出4、5、6的最小公倍数后再减去2,就得到鸡蛋的个数。

http://www.sumir.cn/image/561.gif

2×2×5×3=60

4、5、6的最小公倍数是60。

60-2=58(个)

答:这筐鸡蛋最少有58个。

 

*例6 文化路小学举行了一次智力竞赛。参加竞赛的人中,平均每15人有3个人得一等奖,每8人有2个人得二等奖,每12人有4个人得三等奖。参加这次竞赛的共有94人得奖。求有多少人参加了这次竞赛?得一、二、三等奖的各有多少人?(适于六年级程度)

解:15、8和12的最小公倍数是120,参加这次竞赛的人数是120人。

得一等奖的人数是:

3×(120÷15)=24(人)

得二等奖的人数是:

2×(120÷8)=30(人)

得三等奖的人数是:

4×(120÷12)=40(人)

答略。

 

*例7 有一个电子钟,每到整点响一次铃,每走9分钟亮一次灯。中午12点整时,电子钟既响铃又亮灯。求下一次既响铃又亮灯是几点钟?(适于六年级程度)

解:每到整点响一次铃,就是每到60分钟响一次铃。求间隔多长时间后,电子钟既响铃又亮灯,就是求60与9的最小公倍数。

60与9的最小公倍数是180。

180÷60=3(小时)

由于是中午12点时既响铃又亮灯,所以下一次既响铃又亮灯是下午3点钟。

答略。

 

*例8 一个植树小组原计划在96米长的一段土地上每隔4米栽一棵树,并且已经挖好坑。后来改为每隔6米栽一棵树。求重新挖树坑时可以少挖几个?(适于六年级程度)

解:这一段地全长96米,从一端每隔4米挖一个坑,一共要挖树坑:

96÷4+1=25(个)

后来,改为每隔6米栽一棵树,原来挖的坑有的正好赶在6米一棵的坑位上,可不重新挖。由于4和6的最小公倍数是12,所以从第一个坑开始,每隔12米的那个坑不必挖。

96÷12+1=9(个)

96米中有8个12米,有8个坑是已挖好的,再加上已挖好的第一个坑,一共有9个坑不必重新挖。

答略。

9 一项工程,甲队单独做需要18天,乙队单独做需要24天。两队合作8天后,余下的工程由甲队单独做,甲队还要做几天?(适于六年级程度)

解:由18、24的最小公倍数是72,可把全工程分为72等份。

72÷18=4(份)…………是甲一天做的份数

72÷24=3(份)…………是乙一天做的份数

4+3)×8=56份)………两队8天合作的份数

72-56=16(份)…………余下工程的份数

16÷4=4(天)……………甲还要做的天数

答略。

 

*例10 甲、乙两个码头之间的水路长234千米,某船从甲码头到乙码头需要9小时,从乙码头返回甲码头需要13小时。求此船在静水中的速度?(适于高年级程度)

解:9、13的最小公倍数是117,可以把两码头之间的水路234千米分成117等份。

每一份是:

234÷117=2(千米)

静水中船的速度占总份数的:

13+9)÷2=11(份)

船在静水中每小时行:

2×11=22(千米)

答略。

 

*例11 王勇从山脚下登上山顶,再按原路返回。他上山的速度为每小时3千米,下山的速度为每小时5千米。他上、下山的平均速度是每小时多少千米?(适于六年级程度)

解:设山脚到山顶的距离为3与5的最小公倍数。

3×5=15(千米)

上山用:

15÷3=5(小时)

下山用:

15÷5=3(小时)

总距离÷总时间=平均速度

15×2)÷(5+3)=3.75(千米)

答:他上、下山的平均速度是每小时3.75千米。

*例12 某工厂生产一种零件,要经过三道工序。第一道工序每个工人每小时做50个;第二道工序每个工人每小时做30个;第三道工序每个工人每小时做25个。在要求均衡生产的条件下,这三道工序至少各应分配多少名工人?(适于六年级程度)

解:50、30、25三个数的最小公倍数是150。

第一道工序至少应分配:

150÷50=3(人)

第二道工序至少应分配:

150÷30=5(人)

第三道工序至少应分配:

150÷25=6(人)

答略。


0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有