加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

2014亚太地区数学奥林匹克试题(附:2004 亚太地区数学奥林匹克不等式题)

(2014-03-28 09:54:49)
标签:

流年

分类: 奥赛
                                                    APMO 2014
2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)
                                                                                        2012亚太地区数学奥林匹克试题
      
                        USA AIME 2014   II      26 March 2014
5.实数r和s是多项式p(x)=x^3+ax+b的根,r+4 和 s-3 是多项式 q(x)=x^3+ax+b+240的根,求所有可能的b的绝对值的和。
9.10把椅子被放在圆周上。求所有包含至少3把相邻椅子的椅子的集合的个数。

                      第55届(2014)IMO 越南国家队选拔试题

  2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

  2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

                                   2004 亚太地区数学奥林匹克不等式题



                          一道奥赛试题的另证、加强及拓展

2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

2014亚太地区数学奥林匹克试题(附:2004 <wbr>亚太地区数学奥林匹克不等式题)

第16届(2004年)亚太地区数学奥林匹克竞赛最后一题是一道不等式证明题:

该赛题曾是公认的难题,常见的证明会很繁琐.

文[1]首先采用降幂策略,利用柯西不等式把原不等式左边的六次多项式放缩为三次多项式,然后利用基本不等式继续放缩,最后作差分析,利用抽屉原理并经过复杂的计算得到了所要证的不等式:

本文将首先给出原赛题的另证.然后对其进行加强,并给出多种证明.最后做一点发散和拓展,给读者留下思考的空间.

   最后需要指出的是,原赛题及其加强的各种形式的推广已有不少研究,有兴趣的读者可参考文献[4]-[10],这里不再赘述.

参考文献

[1] 熊斌,冯志刚.数学竞赛之窗[J].数学通讯,2004,11.

[2] 蔡玉书.重要不等式[M].合肥:中国科学技术大学出版社,2011,3.

[3] 安振平.二十六个优美不等式[J].中学数学教学参考(上旬),2010,1-2.

[4] 欧亚召.一道亚太数学奥林匹克试题的加强及推广[J].中学数学研究(江西),2012,1.

[5] 谭震.构造二次函数巧证一道国际竞赛题[J].数学通讯(上半月),2009,1-2.

[6] 谭震.一个四元不等式猜想的构造证明[J].中学生数学(高中),2011,8.

[7] 张凤霞,谷焕春.一道亚太数学奥赛题的推广[J].数学通讯,2005,11.

[8] 谭志中.两个不等式的统一推广与应用[J].数学通讯,2007,19.

[9] 宋庆.一道亚太地区赛题的加强与推广之简证[J].数学通讯,2008,11.

[10] 杜旭安.一道竞赛题的加强与推广[J].数学通讯,2008,5.

这是一道很老的竞赛题,如上所述,已有很多文献进行过研究,我去知网查了搜了一下,关于此竟发现了两个一稿多投,公示如下

    一位是大学副教授,一位是较有名气的中学老师,某书籍作者

[转载]一道奥赛试题的另证、加强及拓展
[转载]一道奥赛试题的另证、加强及拓展
[转载]一道奥赛试题的另证、加强及拓展
[转载]一道奥赛试题的另证、加强及拓展

 

分享: 









http://data.artofproblemsolving.com/images/latex/9/4/5/945906a9fa49a1e949212dfc5dd8f3371645ca85.gif(We let http://data.artofproblemsolving.com/images/latex/7/a/8/7a8a21f77261dde4511ad79c8fe4b5da3e77eb31.gif.)

2.Let http://data.artofproblemsolving.com/images/latex/7/e/f/7efae4056eeef2327039d69662701a8f5005f1f8.gif. For each non-empty subset http://data.artofproblemsolving.com/images/latex/e/0/e/e0e9d2d8e0d47def2236aab10f078ff256bf2bc9.gif, one of its members is chosen as its representative. Find the number of ways to assign representatives to all non-empty subsets of http://data.artofproblemsolving.com/images/latex/0/2/a/02aa629c8b16cd17a44f3a0efec2feed43937642.gifso that if a subset http://data.artofproblemsolving.com/images/latex/5/a/7/5a7cd8c435fbb867ca3f691dc80285fccbd9c117.gif is a disjoint union of non-empty subsets http://data.artofproblemsolving.com/images/latex/3/8/c/38c128d377559b2d4b501a8dbb0b670247ac2b8d.gif, then the representative of http://data.artofproblemsolving.com/images/latex/5/0/c/50c9e8d5fc98727b4bbc93cf5d64a68db647f04f.gif is also the representative of at least one of http://data.artofproblemsolving.com/images/latex/3/2/0/32096c2e0eff33d844ee6d675407ace18289357d.gif.
4.Let http://data.artofproblemsolving.com/images/latex/d/1/8/d1854cae891ec7b29161ccaf79a24b00c274bdaa.gif and http://data.artofproblemsolving.com/images/latex/e/9/d/e9d71f5ee7c92d6dc9e92ffdad17b8bd49418f98.gif be positive integers. We say http://data.artofproblemsolving.com/images/latex/d/1/8/d1854cae891ec7b29161ccaf79a24b00c274bdaa.gif is http://data.artofproblemsolving.com/images/latex/e/9/d/e9d71f5ee7c92d6dc9e92ffdad17b8bd49418f98.gif-discerning if there exists a set consisting of http://data.artofproblemsolving.com/images/latex/d/1/8/d1854cae891ec7b29161ccaf79a24b00c274bdaa.gifdifferent positive integers less than http://data.artofproblemsolving.com/images/latex/e/9/d/e9d71f5ee7c92d6dc9e92ffdad17b8bd49418f98.gif that has no two different subsets http://data.artofproblemsolving.com/images/latex/c/9/e/c9ee5681d3c59f7541c27a38b67edf46259e187b.gif such that the sum of all elements in http://data.artofproblemsolving.com/images/latex/b/2/c/b2c7c0caa10a0cca5ea7d69e54018ae0c0389dd6.gif equals the sum of all elements in http://data.artofproblemsolving.com/images/latex/c/9/e/c9ee5681d3c59f7541c27a38b67edf46259e187b.gif.

(a) Prove that http://data.artofproblemsolving.com/images/latex/3/1/0/310b86e0b62b828562fc91c7be5380a992b2786a.gif-discerning.
(b) Prove that http://data.artofproblemsolving.com/images/latex/0/a/d/0ade7c2cf97f75d009975f4d720d1fa6c19f4897.gif is not http://data.artofproblemsolving.com/images/latex/3/1/0/310b86e0b62b828562fc91c7be5380a992b2786a.gif-discerning.
5.Circles http://data.artofproblemsolving.com/images/latex/4/9/5/4959627bdb882062bf2d1a1cde4bb119077fd40e.gif meet at points http://data.artofproblemsolving.com/images/latex/a/e/4/ae4f281df5a5d0ff3cad6371f76d5c29b6d953ec.gif. Let http://data.artofproblemsolving.com/images/latex/c/6/3/c63ae6dd4fc9f9dda66970e827d13f7c73fe841c.gif be the midpoint of the arc http://data.artofproblemsolving.com/images/latex/0/6/d/06d945942aa26a61be18c3e22bf19bbca8dd2b5d.gif of circle http://data.artofproblemsolving.com/images/latex/c/6/3/c63ae6dd4fc9f9dda66970e827d13f7c73fe841c.gif lies inside http://data.artofproblemsolving.com/images/latex/4/9/5/4959627bdb882062bf2d1a1cde4bb119077fd40e.gif). A chord http://data.artofproblemsolving.com/images/latex/3/7/0/3704f1f9dae9461db6c9186a2f36ed9eef17161a.gif of circle \omega intersects http://data.artofproblemsolving.com/images/latex/4/9/5/4959627bdb882062bf2d1a1cde4bb119077fd40e.gif at Q (Q lies inside http://data.artofproblemsolving.com/images/latex/7/3/b/73b077a63e22815fe5c8ee82dab9894be842b19c.gif). Let http://data.artofproblemsolving.com/images/latex/3/8/8/3881518fc33f8400d03d37796407e704afb7d8de.gif be the tangent line to http://data.artofproblemsolving.com/images/latex/5/1/1/511993d3c99719e38a6779073019dacd7178ddb9.gif, and let http://data.artofproblemsolving.com/images/latex/7/3/0/7301a517a7fb6ac6c57089599516516b45e3ec6e.gif be the tangent line to http://data.artofproblemsolving.com/images/latex/c/3/1/c3156e00d3c2588c639e0d3cf6821258b05761c7.gif. Prove that the circumcircle of the triange formed by the lines http://data.artofproblemsolving.com/images/latex/0/6/d/06d945942aa26a61be18c3e22bf19bbca8dd2b5d.gif is tangent to http://data.artofproblemsolving.com/images/latex/4/9/5/4959627bdb882062bf2d1a1cde4bb119077fd40e.gif.                                2012亚太地区数学奥林匹克试题
      
                        USA AIME 2014   II      26 March 2014
5.实数r和s是多项式p(x)=x^3+ax+b的根,r+4 和 s-3 是多项式 q(x)=x^3+ax+b+240的根,求所有可能的b的绝对值的和。
9.10把椅子被放在圆周上。求所有包含至少3把相邻椅子的椅子的集合的个数。

9. Ten chairs are arranged in a circle. Find the number of subsets of this set of chairs that contain at least three adjacent chairs.



                                       http://cache.artofproblemsolving.com/asyforum/c/7/e/c7ebc01409d831cf20ae98bb8899167f7aee0c57.png亚太地区数学奥林匹克不等式题)" />

                                            

                    第55届(2014)IMO 越南国家队选拔试题

 

1.(day 1 problem 1)Find all functions http://data.artofproblemsolving.com/images/latex/1/d/d/1dda727a7f26477555f829533115894514a8e020.gif such that

http://data.artofproblemsolving.com/images/latex/0/c/f/0cf2c01af76fe43b598c5f98b90ee64671b27c2c.gif

2.(day 2 problem 1) a. Let http://data.artofproblemsolving.com/images/latex/3/c/0/3c01bdbb26f358bab27f267924aa2c9a03fcfdb8.gif be a triangle with altitude http://data.artofproblemsolving.com/images/latex/5/1/1/511993d3c99719e38a6779073019dacd7178ddb9.gif a variable point on http://data.artofproblemsolving.com/images/latex/6/d/9/6d95c1847219c633950f8f1ceca9761315abfc19.gif. Lines http://data.artofproblemsolving.com/images/latex/b/1/f/b1fb3bec6fdb22e19a94fe4c6c4481ccba2ee9f0.gif intersect each other at http://data.artofproblemsolving.com/images/latex/e/0/1/e0184adedf913b076626646d3f52c3b49c39ad6d.gif, lines http://data.artofproblemsolving.com/images/latex/0/6/d/06d945942aa26a61be18c3e22bf19bbca8dd2b5d.gif intersect each other at http://data.artofproblemsolving.com/images/latex/d/b/3/db362a34eab8889d0ef6a22d3fc86258192bc3f4.gif is a quadrilateral inscribed . Prove that

http://data.artofproblemsolving.com/images/latex/e/0/1/e014c33a7f996b88627424a69573a32710712bad.gif
b. Let http://data.artofproblemsolving.com/images/latex/3/c/0/3c01bdbb26f358bab27f267924aa2c9a03fcfdb8.gif be a triangle with orthogonal http://data.artofproblemsolving.com/images/latex/5/1/1/511993d3c99719e38a6779073019dacd7178ddb9.gif a variable point on http://data.artofproblemsolving.com/images/latex/b/d/4/bd4b01946d29a04b84f9d1306289b7687d01b8c2.gif. The line through http://data.artofproblemsolving.com/images/latex/3/2/0/32096c2e0eff33d844ee6d675407ace18289357d.gif perpendicular to http://data.artofproblemsolving.com/images/latex/c/6/3/c63ae6dd4fc9f9dda66970e827d13f7c73fe841c.gif, The line through http://data.artofproblemsolving.com/images/latex/a/e/4/ae4f281df5a5d0ff3cad6371f76d5c29b6d953ec.gif perpendicular to http://data.artofproblemsolving.com/images/latex/a/7/e/a7ee38bb7be4fc44198cb2685d9601dcf2b9f569.gif is the projection of http://data.artofproblemsolving.com/images/latex/d/7/7/d7761b49625778f487c282d96f792ba3ebc301f7.gif. Prove that http://data.artofproblemsolving.com/images/latex/a/3/d/a3dfdfbb351736dbddf53aa6d64860a072a21b80.gifis invariant .

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有