【飞行原理】飞机到底是如何飞起来的:依附运动理论PK伯努利原理(下)
标签:
军事文化 |
分类: 股市心法 |
三、飞机到底如何飞行——依附运动在飞行上的解读
由于本人主要想解读飞机的飞行,所以在下面的依附运动中主要以运动型依附运动为主来解读飞机如何在空气中飞行的。我们知道,飞机的飞行与空气的关系就像鱼儿与水的关系,没有空气,飞机就不能飞行。所以空气的性质就决定了飞机的飞行方式,这就是运动型依附运动。飞机在飞行时,因为被依附物体是气体,它的表现为比水还松软,更加稀薄,易于变形,根本无法托住飞机,只有飞机与空气进行相对的运动,像手快速拍到水面上一样相对变得如地面一样的“坚硬(产生强大的支持升力)”,才能抵抗飞机的重力托住它。根据影响依附运动的因素,我将从机翼的形状,面积、运动方向和角度,空气的性质,以及依附双方的受力情况进行分析。
根据依附运动原理,飞机在空气中飞行属于运动型依附运动,由于空气的性质决定了它无法像地面那样能托住飞机,所以要以机翼与空气的相对运动来克服自身的重力。如下图所示,飞机的机翼在空气中向左平移运动,在机翼与空气的相对运动中,有两种力在机翼和空气身上体现出来,这就是牛顿的第一定律和第三定律。
首先说被依附物——空气,根据牛顿的第一运动定律,也就是惯性定律,空气有保持其运动状态的属性,一般情况下,空气可以看成是静止的。虽然空气质量较小,但对于面积较大的机翼来说,想改变空气静止的运动状态也比较困难,特别是在相对运动速度快的时候。
再看运动物——机翼,它的平移速度越来越快,对所接触的空气施加一个作用力,同时空气也给机翼一个反作用力。机翼运动速度越快,对空气施加作用力就越大,那么空气给机翼的反作用力也越大。再加上相对于重力方向的机翼接触面积较大,所以空气给向前运动的机翼施加施加的作用力较大的。从上面可以看出,飞机的飞行过程是牛顿的第一运动定律和第三运动定律在依附运动双方(机翼和空气)上的综合应用,让空气越来越“坚硬”,能托举起飞机来。
而牛顿的第一定律和第三定律在机翼克服飞机重力飞行中具体的体现,就是空气压差升力和反作用力升力。空气是有密度有压力的,密度压力对飞行升力的影响是至关重要的,是市力节能的源泉。空气密度大,压力也就大,空气密度小,压力也就小,空气的密度与压力基本成正比关系,这就是空气的密度压力理论。举例说像大气,接近地表密度大,一个标准大气压,越到高空越稀薄,半个大气压都不到了。再比方说我们用嘴抽塑料瓶内的空气,瓶内空气密度就小了,外界的大气压就会把瓶子压瘪。而在飞行中能够影响空气的密度和压力的,最主要的就是机翼的形状结构和飞行姿态,所以就存在两种主要获取升力方式,一种是翼型升力,一种是仰(迎)角升力。
1、翼型升力不同的翼型能适应不同的飞行条件。最经典的利用空气获取升力的翼型是非对称的上凸下平的机翼(如下图),是一种诱导型的机翼结构。这种机翼的上表面前头凸起,在前进时会冲击、推动空气顺着机翼上表面向旁侧离开运动,机翼前进速度越快,空气被推离幅度越大。空气被推离机翼上表面,紧贴机翼上表面的空气密度就变小,当机翼的中后部经过此处的时候,由于机翼中后部上下表面逐渐收缩到一起,所以被推离的空气也逐渐回来填补,那么就在机翼头凸起部和机翼尾收缩部之间就形成了一部分弧形空间的空气低密度区。由于这是机翼特定形状诱使下在机翼上表面形成的空气低密度区,所以称为空气诱导低密度区。
再看机翼的下表面是比较平直的,正常无迎角平飞的时候,对空气没有施加影响,因此机翼下表面的空气是静止的,空气密度基本不变,没有受到压缩,压力也不变化,与周围空气的压力差不多。由于是无迎角平飞,无论速度多快机翼下表面的空气也保持静止的状态。但随着机翼速度的加快,机翼上表面的空气密度却越来越小,所以压力也越来越小。无论飞机的速度有多快,机翼下表面的空气总是保持密度压力的稳定,与周围空气压力差不多,而机翼上表面的空气却被前头凸起部分推离得更远,所以接近机翼上表面的空气就越来越稀薄,密度的减小压力当然也越来越小了,所以机翼上下表面形成向上的压力差越来越大。由于空气一个标准的大气压相当于给1平方米的面积施加了10吨的压力,所以较大面积的机翼所产生的升力是多么的可观,可以看出空气的密度压力理论在飞行上多么的重要。
从上面的分析可以看出,机翼的这种升力是利用机翼的特定形状来获得的,所以这种升力就叫做翼型升力。
但并不是所以飞机的机翼都是这样标准的上凸下平的翼型,各种各样的翼型都有,如对称翼型,平板翼型,对称菱形等。这样的翼型就不容易获取诱导性的压差升力,但可以改变飞行姿态,只有利用一定的迎角就可以实现像“上凸下平”的翼型一样的压差升力了。下面就讲一讲在迎角状态下对飞行的影响。
2、仰(迎)角升力
如下图所示,机翼以一定的迎角来飞行时,由于上表面前头没有凸起,所以不会推离空气,上表面对空气没有施加任何作用力。机翼以一定的仰角前进时,机翼的前缘把所遇空气全部推向机翼(前)下表面,那么在机翼的(后)上表面就会形成空白区,所以就得由机翼上方的空气来填补这个空白区域,由于机翼上方的空气是静止的,根据牛顿第一定律,既惯性定律,不能马上完全补充这个区域,所以在向下运动的过程中,在机翼上表面的就形成了空气低密度区。由于这种低密度区不是机翼形状诱导出来的,而是机翼前进时机翼背面“闪”出来的空白区域,是空气在回填补充时形成的低密度区,所以就叫作填补低密度区。由于空气密度低于周围的空气,所以机翼的上表面的压力也小于周围大气压力(负值)。
机翼在前进时也把所遇空气全部“推”向机翼(前)下表面,空气在机翼下聚集压缩,空气密度较大,形成空气高密度区,根据密度与压力成正比的理论,密度大压力就大,所以机翼下表面的压力高于周围的大气压(正值)。机翼的上表面的压力小于周围大气压力(负值),机翼下表面的压力高于周围的大气压(正值),这一正一负,在机翼的上下表面间就形成了巨大的空气压力差,所以就产生了强大的升力。
这种迎角飞行还有好处,比方说聚集在机翼下的空气总不能赖在那不走,最后会顺势向后下方被机翼扇动推离,这个过程中牛顿的第三定律的作用就显现出来,也就是说作用力和反作用力起作用了。机翼下表面给众多压缩的空气一个向下方的作用力,被推离的空气就会给机翼一个向上的反作用力,这又增加了一份升力。机翼上、下表面的空气密度差压力再加上机翼下表面的反作用力,这两种向上的力就形成了迎角飞行的强大升力,这种形式的升力就叫作迎(仰)角升力。
在机翼获取的升力中,反作用力是次要的力,不能以反作用力作为主要升力,这是因为如果以它产生升力就得有同样大小的作用力,这就与火箭的原理差不多了,不市力。所以要以空气密度差压力为占主导的力,让一定形状和角度的机翼在前进中诱导形成机翼上下表面的空气密度差压力,让大气压形成主要升力。由于大气压差力巨大(作用在1平方米上的大气压力为10吨),而拉动机翼前进的力较小,所以这是以横向的小拉力以空气为介质诱导获取纵向的大升力的巧妙转化。因此在飞行中要充分利用空气压力升力,而少用反作用力。
其实迎(仰)角升力是一种通用的升力方式,比方说翼型升力中标准的上凸下平的机翼在飞行时也可以采用迎角飞行,如下图所示。只不过在机翼上仰的过程中机翼上表面的诱导性低密度减弱,逐渐形成填补性低密度区。而机翼下表面上与迎角飞行过程相同,所以迎(仰)角飞行是一种最普遍的飞行。
3、翼型升力和迎角升力的比较(1)、在获得翼型升力时机翼在前进方向上无迎角时的迎风面积较小,基本上就是机翼的厚度。与翼型升力不同,迎角飞行时机翼在前进方向上的迎风面积就较大了,最大可能近半个机翼的面积。那么在前进时,对空气的挪移量就大了。翼型升力的形成过程中为了诱导低密度区而向上推离空气,根据牛顿第三定律,能产生一定的向下的负升力,只不过比机翼上下表面的压差升力小多了。而迎角飞行的机翼就不同,则全都是向上的正升力,也就是说它的压差升力是正的,反作用力升力也是正的,还有它产生的空气压差比翼型的空气压差更大,所以迎角升力是相当大的。
2)、翼型升力主要是密度压力起主要升力作用,而迎角升力是密度压力和牛顿第三定律都起作用,两份作用力起作用,再一次证明迎角升力是相当大的。
(3)、翼型升力只是单倍压力差。这是因为无论机翼速度多快,机翼的下表面的空气都是静止的,所以与周围空气的压力差不多(左上图)。而上表面的空气压力会越来越小,就算快小到0个大气压,那么也就是一个标准的大气压差。而迎角升力不同,它可能会形成双重的压力差。它的机翼上表面的压力越来越小,而机翼下表面的压力与周围的空气压力比会越来越大,这一大一小就是可能是双倍的压力了。
通过上面这主要几点的分析就可以看出为什么机翼在迎角飞行时升力更大的原因了。
4、依附运动PK伯努利原理:飞机飞行原理的解读飞机带动机翼向前运动中,弥漫在机翼上、下表面的空气受到机翼运动的影响,做着与飞行方向垂直的运动,也就是被推离机翼表面的纵向运动,当机翼离开时再填补回来(如下图),而不是沿着机翼表面的横向流动。就像我们用手插入袋子里的大米,米粒被手分开向两旁运动,当手离开时米粒又自动合到一起。所以空气并不是真的顺着机翼流动,而是在做从机翼前头向旁侧做推离后再到机翼尾部填补回来的运动(空气在机翼前头分开到机翼尾汇合),空气在飞行方向上根本没有流动,所以与伯努利原理无关,这是空气的压力密度理论在起作用。那为什么后人把飞机的飞行与伯努利原理联系起来?我想这主要是没有真正了解伯努利原理的成因,伯努利原理的关键是流体必须是流动着的(见前面说明),而不是像机翼和空气这样的相对运动。
另外如果认为机翼上下表面的空气都流动,利用伯努利原理分析就会得出上下表面压力都会减小的推测,速度越快压力越小,机翼上下表面的压力差也会越小,那么怎能形成飞机的强大升力呢?这就很矛盾。而按照依附运动理论分析就明白了,这是机翼上下表面空气密度变化引起的压力变化而已,机翼速度越快,机翼上表面空气密度越小,压力越小,而机翼下表面的密度和压力不变或增加。所以机翼速度越快,上下表面的压力差越大,就形成了强大的升力,这才是飞机为什么能起飞的正解。
飞机是依附在空气中克服地球引力飞行的,它的飞行是一种依附运动,也就是必须依靠空气才能进行克服重力的运动,机翼在空气中飞行时上下表面就形成了空气压力差升力。飞机在一定速度范围内飞行时遇到的阻力主要是机身和机翼等产生的摩擦阻力、压差阻力、诱导阻力和干扰阻力等,这些阻力之和与飞机的重力相比还是相差很远的。飞机的飞行就是发动机以小拉力利用机翼依附空气相互运动换取大升力的过程,把较小的平行推力通过空气这种介质转化为垂直较大的升力,所以耗能少,经济性好,就得到了广泛的推广。这是依附运动原理中克服重力的精髓,没有对空气的依附,就不能将较小的平推力转化成较大的垂直向上的升力。
从以上的叙述就看出,依附运动能比伯努利原理更好地解读飞机为什么推重比小于1也能飞行,为什么市力飞行,能为飞行的进一步发展提供更好地理论基础。
四、研究依附运动的意义依附运动理论能更好地解释一些飞行现象,能更好地帮助人们理解飞行。比如飞机飞行、倒飞,音爆的成因等。也能更好地帮助人们进一步的飞行,比如可以帮助人们设计出在一定速度范围内消音爆的飞机,设计垂直起降飞机等。
比方说飞机为什么能倒飞,这就是一种运动型依附运动,是机翼在迎角状态下飞行的一种表现,这是伯努利原理不容易解读的。
再比方说标准的升力翼型为什么不能用于超音速,这就是在依附运动中机翼前头凸起的部分在近音速时推开空气,由于机翼速度太快,空气还没来得及依附着机翼上表面到尾部汇合,机翼就“冲”过去了,所以被分开的空气在猛烈汇合撞击在一起,形成什么不利的紊流或音爆,不利于飞行。所以,超音速翼型就得菱形的或平板的等对称的机翼,让空气能依附机翼柔和运动。
依附运动理论的提出可以修正人们对飞行的认识,更正伯努利原理在飞行中的定势思维,让人们更了解飞机到底是怎么飞行的。因为我们以前都是认为飞机在飞行时伯努利原理是起作用的,所以我们就建立了风洞,什么东西都拿到洞里吹,这是完全模仿伯努利原理的。按照依附运动原理,就不是用风吹,而是让模型在有可观察烟层的洞中按一定的速度移动,从而模仿真实的飞行环境,观察真实的飞行状态。
依附运动理论认为飞机的飞行可能并不比汽车在地面的行驶消耗更多的能量。汽车在公路上行驶虽然不用像飞机那样大的动力,但公路的蜿蜒让汽车路程更长,公路的崎岖让汽车的能耗更大,所以汽车的油耗与公路的情况密不可分。而飞机只要上升到巡航高度后就可以平飞进行最节能的依附运动了,到目的地走直线,走捷径,速度是汽车的十多倍,快多了,所以飞机的与地面运输的能耗并不一定要高。但目前为什么空中航运就是昂贵呢?我想这就是滑跑起飞造成的问题,必须得有跑道。危险的起降,昂贵的机场建设费用,其它的附加费用等等。所以只要解决了飞机的起降问题,实现像地面汽车一样的经济行驶的日子就不远了。而依附运动理论的提出,让飞机的垂直起降找到了方向,只要设计出强大的利用依附运动的原地获取升力的装置,如风扇,就离实用的垂直起降更近了一步。
依附运动是一种多种学科多种理论起综合作用的运动理论,由于本人的能力所限,可能表达上不是太清楚,说明上有不足,这有待于他人的完善或帮助,也可能是否定。
做为一个航空爱好者,我想说的是我们中国人在研究飞行的时候要有自己的头脑,不能人云亦云。外国的月亮不一定比中国圆,他们的理论不一定是尽善尽美的。如果我们只是索取,不会打问号,不会创新,那我们永远都是小跟班的,永远受制于人。所以要用我们的智慧,用我们实在的双手,用我们那永远想飞的心来铸就祖国那永远蓝天雄鹰!

加载中…