加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

Quadratic function

(2014-05-04 05:16:55)
分类: MathsConcept
http://en.wikipedia.org/wiki/Quadratic_function

quadratic function, in mathematics, is a polynomial function of the form

http://upload.wikimedia.org/math/e/4/2/e42ed2040133736946562cd880e4dfb4.pngfunction" />[1]

The graph of a quadratic function is a parabola whose axis of symmetry is parallel to the y-axis.

The expression ax2 bx c in the definition of a quadratic function is a polynomial of degree 2, or a 2nd degree polynomial, because the highest exponent of x is 2. This expression is also called a quadratic polynomial or quadratic.

If the quadratic function is set equal to zero, then the result is a quadratic equation. The solutions to the equation are called the roots of the equation.

 

 

Origin of word[edit]

The adjective quadratic comes from the Latin word quadrātum ("square"). A term like x2 is called a square in algebra because it is the area of a square with side x.

In general, a prefix quadr(i)- indicates the number 4. Examples are quadrilateral and quadrant. Quadratum is the Latin word for square because a square has four sides.

Roots[edit]

Further information: Quadratic equation

The roots (zeros) of the quadratic function

http://upload.wikimedia.org/math/d/a/a/daadbd6a3fc3de84dfb2a81dca0faec4.pngfunction" />

are the values of x for which f(x) = 0.

When the coefficients ab, and c, are real or complex, the roots are

http://upload.wikimedia.org/math/9/7/a/97a891cd9989c2cb276a5e27756fe92c.pngfunction" />

where the discriminant is defined as

http://upload.wikimedia.org/math/0/6/5/065009446a035a6d0f4b5aa2ef0436e2.pngfunction" />

Forms of a quadratic function[edit]

A quadratic function can be expressed in three formats:[2]

To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots x1 and x2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.

Graph[edit]

Regardless of the format, the graph of a quadratic function is a parabola (as shown above).

  • If a > 0, (or is a positive number), the parabola opens upward.
  • If a < 0, (or is a negative number), the parabola opens downward.

The coefficient a controls the speed of increase (or decrease) of the quadratic function from the vertex, bigger positivea makes the function increase faster and the graph appear more closed.

The coefficients b and a together control the axis of symmetry of the parabola (also the x-coordinate of the vertex) which is at http://upload.wikimedia.org/math/9/5/6/95616217ab7a7c22607bed404562d656.pngfunction" />.

The coefficient b alone is the declivity of the parabola as y-axis intercepts.

The coefficient c controls the height of the parabola, more specifically, it is the point where the parabola intercept they-axis.

Vertex[edit]

The vertex of a parabola is the place where it turns, hence, it's also called the turning point. If the quadratic function is in vertex form, the vertex is (hk). By the method of completing the square, one can turn the general form

http://upload.wikimedia.org/math/6/f/4/6f495d5460f7c510df9e61501210aa02.pngfunction" />

into

http://upload.wikimedia.org/math/f/2/f/f2f4a07f66551dc4d983e31def837308.pngfunction" />

so the vertex of the parabola in the vertex form is

http://upload.wikimedia.org/math/a/7/a/a7a7b7b2fda741b65e73c3e189fe954f.pngfunction" />

If the quadratic function is in factored form

http://upload.wikimedia.org/math/a/0/b/a0b13a76550253400fc86c1db7cd0fe0.pngfunction" />

the average of the two roots, i.e.,

http://upload.wikimedia.org/math/d/c/f/dcf851ceba94350771970e167c31d13f.pngfunction" />

is the x-coordinate of the vertex, and hence the vertex is

http://upload.wikimedia.org/math/1/1/8/11816dc3d53a5fd917aab6cc0fcdc924.pngfunction" />

The vertex is also the maximum point if a < 0, or the minimum point if a > 0.

The vertical line

http://upload.wikimedia.org/math/7/1/0/7109a4aac1962a3509371ae8c07147ff.pngfunction" />

that passes through the vertex is also the axis of symmetry of the parabola.

Maximum and minimum points[edit]

Using calculus, the vertex point, being a maximum or minimum of the function, can be obtained by finding the roots of the derivative:

http://upload.wikimedia.org/math/6/4/0/64006cfce3bb8a43542cf29da45dd9c8.pngfunction" />

giving

http://upload.wikimedia.org/math/9/5/6/95616217ab7a7c22607bed404562d656.pngfunction" />

with the corresponding function value

http://upload.wikimedia.org/math/2/3/e/23e94302448d6afdde32fc677e565d7f.pngfunction" />

so again the vertex point coordinates can be expressed as

http://upload.wikimedia.org/math/a/7/a/a7a7b7b2fda741b65e73c3e189fe954f.pngfunction" />

The square root of a quadratic function[edit]

The square root of a quadratic function gives rise to one of the four conic sections, almost always either to an ellipse or to a hyperbola. If http://upload.wikimedia.org/math/6/a/0/6a05ff96c7336f9a0349f61ac6a2dbab.pngfunction" /> then the equation http://upload.wikimedia.org/math/2/3/5/235f7c05ba25808252208efbaaeed7ce.pngfunction" /> describes a hyperbola. The axis of the hyperbola is determined by the ordinate of the minimum point of the corresponding parabola http://upload.wikimedia.org/math/d/c/8/dc85de732d4a19c1359517d077fc7b26.pngfunction" />.
If the ordinate is negative, then the hyperbola's axis is horizontal. If the ordinate is positive, then the hyperbola's axis is vertical.
If http://upload.wikimedia.org/math/8/a/9/8a95b265d046660a2b84fa330aa9596e.pngfunction" /> then the equation http://upload.wikimedia.org/math/2/3/5/235f7c05ba25808252208efbaaeed7ce.pngfunction" /> describes either an ellipse or nothing at all. If the ordinate of the maximum point of the corresponding parabola http://upload.wikimedia.org/math/d/c/8/dc85de732d4a19c1359517d077fc7b26.pngfunction" /> is positive, then its square root describes an ellipse, but if the ordinate is negative then it describes an empty locus of points.

Iteration[edit]

Given an http://upload.wikimedia.org/math/1/c/0/1c0608dbfe281f9c9e4c4a6b63317d40.pngfunction" />, one cannot always deduce the analytic form of http://upload.wikimedia.org/math/f/9/4/f94f4d2beeaecb91715fc2088748d664.pngfunction" />, which means the nth iteration of http://upload.wikimedia.org/math/5/0/b/50bbd36e1fd2333108437a2ca378be62.pngfunction" />. (The superscript can be extended to negative number referring to the iteration of the inverse of http://upload.wikimedia.org/math/5/0/b/50bbd36e1fd2333108437a2ca378be62.pngfunction" /> if the inverse exists.) But there is one easier case, in which http://upload.wikimedia.org/math/4/1/b/41b250ec405b66d2205ede265d6dcaa6.pngfunction" />.

In such case, one has

http://upload.wikimedia.org/math/b/3/8/b382c47c4f31d08644e406d7d482c003.pngfunction" />,

where

http://upload.wikimedia.org/math/0/8/6/086b601165e8b1444b131f40d72a2d14.pngfunction" />.

So by induction,

http://upload.wikimedia.org/math/e/7/5/e75667f3ec9bd51ec67cf9f1bde4f7fa.pngfunction" />

can be obtained, where http://upload.wikimedia.org/math/f/d/2/fd22c7aeb5a80e3b00b3b4510e8467f8.pngfunction" /> can be easily computed as

http://upload.wikimedia.org/math/5/4/1/541a57b09a09c410d506af787afc37f6.pngfunction" />.

Finally, we have

http://upload.wikimedia.org/math/1/3/c/13cb2a59527719a0af28261b52e07650.pngfunction" />,

in the case of http://upload.wikimedia.org/math/4/1/b/41b250ec405b66d2205ede265d6dcaa6.pngfunction" />.

See Topological conjugacy for more detail about such relationship between f and g. And see Complex quadratic polynomial for the chaotic behavior in the general iteration.

Bivariate (two variable) quadratic function[edit]

Further information: Quadric and Quadratic form

bivariate quadratic function is a second-degree polynomial of the form

http://upload.wikimedia.org/math/5/8/f/58fccdbcaf439a4f5036e95b426533f4.pngfunction" />

Such a function describes a quadratic surface. Setting http://upload.wikimedia.org/math/9/4/c/94c840af294dc8fb6e7d26830669530f.pngfunction" /> equal to zero describes the intersection of the surface with the plane http://upload.wikimedia.org/math/9/4/f/94f1295d5f77f0f55c687db9234db844.pngfunction" />, which is a locus of points equivalent to a conic section.

Minimum/maximum[edit]

If http://upload.wikimedia.org/math/3/0/0/300fbfe9baec4398a2e746d02816e015.pngfunction" /> the function has no maximum or minimum, its graph forms an hyperbolic paraboloid.

If http://upload.wikimedia.org/math/0/7/3/0735e231c8e2946f42c17e87ef5cbb3b.pngfunction" /> the function has a minimum if A>0, and a maximum if A<0, its graph forms an elliptic paraboloid.

The minimum or maximum of a bivariate quadratic function is obtained at http://upload.wikimedia.org/math/3/d/c/3dc8104b3d383a987025714a88b4dd2d.pngfunction" /> where:

http://upload.wikimedia.org/math/c/e/2/ce2fb633bffc5aa817411095ed348c32.pngfunction" />
http://upload.wikimedia.org/math/0/2/f/02f8b96bf72c9895913745a0ee1c82b4.pngfunction" />

If http://upload.wikimedia.org/math/6/3/e/63ec3a014bb129787816562a434a1ea6.pngfunction" /> the function has no maximum or minimum, its graph forms a parabolic cylinder.

If http://upload.wikimedia.org/math/d/6/3/d63015b53bc37c42b7613054e273fe7b.pngfunction" /> the function achieves the maximum/minimum at a line. Similarly, a minimum if A>0 and a maximum if A<0, its graph forms a parabolic cylinder.

Quadratic polynomial[edit]

In mathematics, a quadratic polynomial or quadratic is a polynomial of degree two, also called second-order polynomial. That means the exponents of the polynomial's variables are no larger than 2. For example, http://upload.wikimedia.org/math/c/a/5/ca59ed1fc8eabcacdd1c3203c33362c4.pngfunction" /> is a quadratic polynomial, while http://upload.wikimedia.org/math/7/2/5/725ccecb33637063d99e4902ac7e9c96.pngfunction" /> is not.

Coefficients[edit]

The coefficients of a polynomial are often taken to be real or complex numbers, but in fact, a polynomial may be defined over any ring.

Degree[edit]

When using the term "quadratic polynomial", authors sometimes mean "having degree exactly 2", and sometimes "having degree at most 2". If the degree is less than 2, this may be called a "degenerate case". Usually the context will establish which of the two is meant.

Sometimes the word "order" is used with the meaning of "degree", e.g. a second-order polynomial.

Variables[edit]

A quadratic polynomial may involve a single variable x, or multiple variables such as xy, and z.

The one-variable case[edit]

Any single-variable quadratic polynomial may be written as

http://upload.wikimedia.org/math/e/4/5/e45f60ad059d565f88c2a61f96b68100.pngfunction" />

where x is the variable, and ab, and c represent the coefficients. In elementary algebra, such polynomials often arise in the form of a quadratic equation http://upload.wikimedia.org/math/0/c/4/0c4913db725b72609d4825124dda12aa.pngfunction" />. The solutions to this equation are called the roots of the quadratic polynomial, and may be found through factorizationcompleting the squaregraphingNewton's method, or through the use of the quadratic formula. Each quadratic polynomial has an associated quadratic function, whose graph is a parabola.

If the polynomial is a polynomial in one variable, it determines a quadratic function in one variable. An example is given by f(xx2 x − 2;. The graph of such a function is aparabola (in degenerate cases a line), and its zeroes can be found by solving the quadratic equation f(x0.

There are three main forms :

Two variables case[edit]

Any quadratic polynomial with two variables may be written as

http://upload.wikimedia.org/math/1/7/d/17dca683693fb10cfbbe4001a922fbcb.pngfunction" />

where x and y are the variables and abcde, and f are the coefficients. Such polynomials are fundamental to the study of conic sections. Similarly, quadratic polynomials with three or more variables correspond to quadric surfaces and hypersurfaces. In linear algebra, quadratic polynomials can be generalized to the notion of a quadratic form on avector space.

N variables case[edit]

In the general case, a quadratic polynomial in n variables x1, ..., xn can be written in the form

http://upload.wikimedia.org/math/7/6/e/76e342548efb148323f27b21ccfef075.pngfunction" />

where Q is a symmetric n-dimensional matrixP is an n-dimensional vector, and R a constant.

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有