http://en.wikipedia.org/wiki/Normalized_vector
In mathematics,
a unit
vector in a normed vector
space is a vector (often
a spatial
vector) whose length is
1 (the unit length). A unit vector is often denoted by a lowercase
letter with a "hat", like
this: http://upload.wikimedia.org/math/a/b/6/ab6d5202f926ed23242a4754abf0a2c9.pngvector(Normalized vector)" /> (pronounced
"i-hat").
In Euclidean space,
the dot
product of two unit
vectors is simply the cosine of the angle between them.
This follows from the formula for the dot product, since the
lengths are both 1.
The normalized
vector or versor http://upload.wikimedia.org/math/7/5/e/75ee590ab63d3067105f760851f7918b.pngvector(Normalized vector)" /> of
a non-zero vector u is
the unit vector codirectional with u,
i.e.,
-
http://upload.wikimedia.org/math/1/6/0/160cba30d26b18903acfd568fe2a89e9.pngvector(Normalized vector)" />
where ||u|| is the norm (or
length) of u. The
term normalized
vector is sometimes used
as a synonym for unit
vector.
The elements of a basis are
usually chosen to be unit vectors. Every vector in the space may be
written as a linear combination of unit vectors. The most commonly
encountered bases areCartesian, polar,
and spherical coordinates.
Each uses different unit vectors according to the symmetry of the
coordinate system. Since these systems are encountered in so many
different contexts, it is not uncommon to encounter different
naming conventions than those used here.
Orthogonal coordinates[edit]
Cartesian coordinates[edit]
In the three dimensional Cartesian
coordinate system, the unit vectors codirectional with
the x, y,
and z axes
are sometimes referred to as versors of the coordinate
system.
-
http://upload.wikimedia.org/math/8/a/1/8a1dd5d83a20979bddbf5672ed65c022.pngvector(Normalized vector)" />
These are often written using normal vector notation
(e.g. i,
or http://upload.wikimedia.org/math/0/7/1/071f9f13e1a69c07e0d5af2381be5226.pngvector(Normalized vector)" />)
rather than the circumflex notation, and in
most contexts it can be assumed that i, j,
and k,
(or http://upload.wikimedia.org/math/0/c/e/0ce3c8c83ac88a97da62f18e619d599c.pngvector(Normalized vector)" />)
are versors of a Cartesian coordinate system (hence a term of
mutually orthogonal unit vectors). The
notations http://upload.wikimedia.org/math/7/c/3/7c32a6f9cdd3dcf942d4c27efc3db664.pngvector(Normalized vector)" />,
or http://upload.wikimedia.org/math/0/4/c/04cdc038d644837d4b3012533f973c64.pngvector(Normalized vector)" />,
with or without hat/circumflex, are also used, particularly in
contexts where i, j, k might
lead to confusion with another quantity (for instance
with index symbols such
as i, j, k,
used to identify an element of a set or array or sequence of
variables). These vectors represent an example of a standard
basis.
When a unit vector in space is expressed, with Cartesian
notation, as a linear combination of i, j, k,
its three scalar components can be referred to as direction
cosines. The value of each component is equal to the cosine of
the angle formed by the unit vector with the respective basis
vector. This is one of the methods used to describe the orientation (angular
position) of a straight line, segment of straight line, oriented
axis, or segment of oriented axis (vector).
Cylindrical coordinates[edit]
The unit vectors appropriate to cylindrical symmetry
are: http://upload.wikimedia.org/math/9/5/7/9579abb6959a2042af3ce54a68651343.pngvector(Normalized vector)" /> (also
designated http://upload.wikimedia.org/math/1/3/e/13e62c9c781fb977fb4895c5bc6084a0.pngvector(Normalized vector)" />),
the distance from the axis of symmetry; http://upload.wikimedia.org/math/2/1/a/21adc7e05a467fdb0ec5d99d39845db9.pngvector(Normalized vector)" />,
the angle measured counterclockwise from the positive x-axis;
and http://upload.wikimedia.org/math/6/2/2/622fb40afbb1f9fcfbf7ff9c98f11a1b.pngvector(Normalized vector)" />.
They are related to the Cartesian basis http://upload.wikimedia.org/math/8/7/5/875326710761d5ed42bdc6e30c4bf962.pngvector(Normalized vector)" /> by:
-
http://upload.wikimedia.org/math/2/c/0/2c08351360892cf241d630875a66f920.pngvector(Normalized vector)" />
-
http://upload.wikimedia.org/math/f/0/0/f0099a5079cadea4f9aa4a0da9e9a84f.pngvector(Normalized vector)" />
-
http://upload.wikimedia.org/math/0/b/1/0b10e5ae56e96423bc10a50986a72747.pngvector(Normalized vector)" />
It is important to note that http://upload.wikimedia.org/math/9/5/7/9579abb6959a2042af3ce54a68651343.pngvector(Normalized vector)" /> and http://upload.wikimedia.org/math/2/1/a/21adc7e05a467fdb0ec5d99d39845db9.pngvector(Normalized vector)" /> are
functions of http://upload.wikimedia.org/math/3/5/3/3538eb9c84efdcbd130c4c953781cfdb.pngvector(Normalized vector)" />,
and are not constant
in direction. When differentiating or integrating in cylindrical
coordinates, these unit vectors themselves must also be operated
on. For a more complete description, see Jacobian matrix.
The derivatives with respect to http://upload.wikimedia.org/math/3/5/3/3538eb9c84efdcbd130c4c953781cfdb.pngvector(Normalized vector)" /> are:
-
http://upload.wikimedia.org/math/9/c/7/9c7d08e974b689be895b14e35f7a2e14.pngvector(Normalized vector)" />
-
http://upload.wikimedia.org/math/d/c/2/dc2d92865693b663aa607467d3dbfc30.pngvector(Normalized vector)" />
-
http://upload.wikimedia.org/math/9/8/e/98e7eab3cae485f65c17ac696d3bb300.pngvector(Normalized vector)" />
Spherical coordinates[edit]
The unit vectors appropriate to spherical symmetry are: http://upload.wikimedia.org/math/b/c/9/bc9a431c46a5c00d1371e3e33c08e51b.pngvector(Normalized vector)" />,
the direction in which the radial distance from the origin
increases; http://upload.wikimedia.org/math/7/c/d/7cdb2c1cc258befce2b93d1fe5f93c28.pngvector(Normalized vector)" />,
the direction in which the angle in the x-y plane
counterclockwise from the positive x-axis is
increasing; and http://upload.wikimedia.org/math/2/d/7/2d7b1378aa0b6d0b2f95607c2f4e8194.pngvector(Normalized vector)" />,
the direction in which the angle from the positive z axis
is increasing. To minimize degeneracy, the polar angle is usually
taken http://upload.wikimedia.org/math/b/3/e/b3e81b316866519378bec2c2431c248d.pngvector(Normalized vector)" />.
It is especially important to note the context of any ordered
triplet written in spherical coordinates, as the roles
of http://upload.wikimedia.org/math/2/1/a/21adc7e05a467fdb0ec5d99d39845db9.pngvector(Normalized vector)" /> and http://upload.wikimedia.org/math/2/d/7/2d7b1378aa0b6d0b2f95607c2f4e8194.pngvector(Normalized vector)" /> are
often reversed. Here, the American "physics" convention[1] is
used. This leaves the azimuthal angle http://upload.wikimedia.org/math/3/5/3/3538eb9c84efdcbd130c4c953781cfdb.pngvector(Normalized vector)" /> defined
the same as in cylindrical coordinates. The Cartesian relations
are:
-
http://upload.wikimedia.org/math/a/1/a/a1a303d2623dcaa002809188599dc9c7.pngvector(Normalized vector)" />
-
http://upload.wikimedia.org/math/8/1/9/8197fb6a05ccaf7b624a4a6fe24c5567.pngvector(Normalized vector)" />
-
http://upload.wikimedia.org/math/7/9/e/79eb09cbb46123591264cf57618a757b.pngvector(Normalized vector)" />
The spherical unit vectors depend on both http://upload.wikimedia.org/math/3/5/3/3538eb9c84efdcbd130c4c953781cfdb.pngvector(Normalized vector)" /> and
,
and hence there are 5 possible non-zero derivatives. For a more
complete description, see Jacobian. The non-zero
derivatives are:
-
http://upload.wikimedia.org/math/e/4/e/e4ee7f9f099d2bba049b20d7c794d6a6.pngvector(Normalized vector)" />
-
http://upload.wikimedia.org/math/3/d/a/3da7414c7c0bb487636c16ad35afc83d.pngvector(Normalized vector)" />
-
http://upload.wikimedia.org/math/6/e/5/6e5c799ab8cb25fa75808bcef0849cc2.pngvector(Normalized vector)" />
-
http://upload.wikimedia.org/math/a/6/d/a6d17ab06af0e793b07868bbb31d83f8.pngvector(Normalized vector)" />
-
http://upload.wikimedia.org/math/6/0/a/60a35fda3ae1ca9bd78bdeea2f09a28c.pngvector(Normalized vector)" />
General unit vectors[edit]
Common general themes of unit vectors occur throughout physics and geometry:[2]
Curvilinear coordinates[edit]
In general, a coordinate system may be uniquely specified using a
number of linearly
independent unit
vectors http://upload.wikimedia.org/math/f/8/8/f882eae30b22c9febd7918e29f705da8.pngvector(Normalized vector)" /> equal
to the degrees of freedom of the space. For ordinary 3-space, these
vectors may be denoted http://upload.wikimedia.org/math/8/1/a/81ad21835de2ed2c474c409bdc159f11.pngvector(Normalized vector)" />.
It is nearly always convenient to define the system to be
orthonormal and right-handed:
http://upload.wikimedia.org/math/9/4/2/942656a133049621065c31e269ebf64d.pngvector(Normalized vector)" />
http://upload.wikimedia.org/math/2/1/7/217be02286de60c0d022b29dc04fb618.pngvector(Normalized vector)" />
where δij is the Kronecker
delta (which is one
for i = j and
zero else) and http://upload.wikimedia.org/math/8/3/a/83a43d12ddc5e0ebdb49d3d3a28e41f3.pngvector(Normalized vector)" /> is
the Levi-Civita
symbol (which is one for
permutations ordered as ijk and
minus one for permutations ordered askji).
See
also[edit]
References[edit]
-
^ Tevian Dray and Corinne A. Manogue,Spherical
Coordinates, College Math Journal 34, 168-169
(2003).
-
^ F. Ayres, E. Mandelson (2009). Calculus
(Schaum's Outlines Series) (5th ed.). Mc Graw
Hill. ISBN 978-0-07-150861-2.
-
^ M. R. Spiegel, S. Lipschutz, D. Spellman
(2009). Vector Analysis
(Schaum's Outlines Series) (2nd ed.). Mc Graw
Hill. ISBN 978-0-07-161545-7.
- G.
B. Arfken & H. J. Weber (2000). Mathematical
Methods for Physicists (5th ed. ed.).
Academic Press. ISBN 0-12-059825-6.
- Spiegel, Murray R. (1998). Schaum's
Outlines: Mathematical Handbook of Formulas and
Tables (2nd ed. ed.).
McGraw-Hill. ISBN 0-07-038203-4.
- Griffiths, David J. (1998). Introduction to
Electrodynamics (3rd ed. ed.).
Prentice Hall. ISBN 0-13-805326-X.
加载中,请稍候......