加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

用matlab做一元线性回归分析

(2009-03-03 10:52:08)
标签:

线性回归

回归分析

of

matlab

by

杂谈

分类: matlab学习

一元线性回归分析是在排除其他影响因素的假定其他影响因素确定的情况下,分析某一个因素(自变量)是如何影响另外一个事物(因变量)的过程,所进行的分析是比较理想化的。

用SPSS可以做一元线性回归分析,但是当回归的自变量比较多的时候,一个一个的输入会比较麻烦,增加了计算量,本文中描述了如何用matlab语言来实现一元线性回归分析。

在matlab中,regress命令是用来做回归的。假如有96个SNP,作为自变量,有一个因变量,比如说HDL,LDL等等,将它们以列导入matlab。值得注意的是:自变量前面必须有一列全为1的数据,看下面例子即可理解。

 

for i=1:96
z=[ones(2334,1), x(:,i)];
[b,bint,r,rint,stats]=regress(y,z);
c(i,:)=stats;
end

在一元线性回归方程中,回归方程的显著性检验可以替代回归系数的显著性检验,并且F=T2

 

 

 百度中的一个例子:

 

 X=[1 1 4 6 8 11 14 17 21]'
Y=[2.49 3.30 3.68 12.20 27.04 61.10 108.80 170.90 275.50]'
X=[ones(9,1), X]
[b,bint,r,rint,stats]= regress(Y,X)

输出向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats是用于检验回归模型的统计量,有三个数值,第一个是R2,其中R是相关系数,第二个是F统计量值,第三个是与统计量F对应的概率P,当P<α时拒绝H0,回归模型成立

 


regress


Multiple linear regression
Syntax


b = regress(y,X)
[b,bint] = regress(y,X)
[b,bint,r] = regress(y,X)
[b,bint,r,rint] = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X)
[...] = regress(y,X,alpha)

Description


b = regress(y,X) returns the least squares fit of y on X by solving the linear model

 

for β, where:

y is an n-by-1 vector of observations

X is an n-by-p matrix of regressors

β is a p-by-1 vector of parameters

ɛ is an n-by-1 vector of random disturbances

[b,bint] = regress(y,X) returns a matrix bint of 95% confidence intervals for β.

[b,bint,r] = regress(y,X) returns a vector, r of residuals.

[b,bint,r,rint] = regress(y,X) returns a matrix rint of intervals that can be used to diagnose outliers. If rint(i,:) does not contain zero, then the ith residual is larger than would be expected, at the 5% significance level. This is evidence that the ith observation is an outlier.

 

[b,bint,r,rint,stats] = regress(y,X) returns a vector stats that contains the R2 statistic, the F statistic and a p value for the full model, and an estimate of the error variance.

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有