加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

wfilters函数

(2012-04-20 13:46:25)
标签:

wfilters

matlab

杂谈

以下内容来自matlab help,发出来是为了自己查阅方便。

wfilters

Wavelet filters

Syntax

  • [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname')
    [F1,F2] = wfilters('wname','type')
    

Description

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') computes four filters associated with the orthogonal or biorthogonal wavelet named in the string 'wname'.

The four output filters are

  • Lo_D, the decomposition low-pass filter
  • Hi_D, the decomposition high-pass filter
  • Lo_R, the reconstruction low-pass filter
  • Hi_R, the reconstruction high-pass filter

Available orthogonal or biorthogonal wavelet names 'wname' are listed in the table below.

Wavelet Families
Wavelets
Daubechies
'db1' or 'haar', 'db2', ... ,'db10', ... , 'db45'
Coiflets
'coif1', ... , 'coif5'
Symlets
'sym2', ... , 'sym8', ... ,'sym45'
Discrete Meyer
'dmey'
Biorthogonal
'bior1.1', 'bior1.3', 'bior1.5'
'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8'
'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7'
'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8'
Reverse Biorthogonal
'rbio1.1', 'rbio1.3', 'rbio1.5'
'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8'
'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7'
'rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8'

[F1,F2] = wfilters('wname','type') returns the following filters:

Lo_D and Hi_D
(Decomposition filters)
If 'type' = 'd'
Lo_R and Hi_R
(Reconstruction filters)
If 'type' = 'r'
Lo_D and Lo_R
(Low-pass filters)
If 'type' = 'l'
Hi_D and Hi_R
(High-pass filters)
If 'type' = 'h'

Examples

  • % Set wavelet name. 
    wname = 'db5';
    
    % Compute the four filters associated with wavelet name given 
    % by the input string wname. 
    [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname); 
    subplot(221); stem(Lo_D); 
    title('Decomposition low-pass filter'); 
    subplot(222); stem(Hi_D); 
    title('Decomposition high-pass filter'); 
    subplot(223); stem(Lo_R); 
    title('Reconstruction low-pass filter'); 
    subplot(224); stem(Hi_R); 
    title('Reconstruction high-pass filter'); 
    xlabel('The four filters for db5')
    
    % Editing some graphical properties,
    % the following figure is generated.
    
    http://s5/middle/4abb4facgbe15db55d954&690

References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有