标签:
杂谈 |
层流: 粘性流体的层状运动。在这种流动中,流体微团的轨迹没有明显的不规则脉动。相邻流体层间只有分子热运动造成的动量交换。常见的层流有毛细管或多孔介质中的流动、轴承润滑膜中的流动、绕流物体表面边界层中的流动等。层流只出现在雷诺数Re(Re=ρUL/μ)较小的情况中,即流体密度ρ、特征速度U和物体特征长度L都很小,或流体粘度μ很大的情况中。当Re超过某一临界雷诺数Recr时,层流因受扰动开始向不规则的湍流过渡,同时运动阻力急剧增大。临界雷诺数主要取决于流动形式。对于圆管,Recr≈2000,这里特征速度是圆管横截面上的平均速度,特征长度是圆管内径。层流远比湍流简单,其流动方程大多有精确解、近似解和数值解。层流一般比湍流的摩擦阻力小,因而在飞行器或船舶设计中,应尽量使边界层流动保持层流状态。 湍流: 流体作湍流时,阻力大流量小,能量耗损增加。实验证明,能量耗损E与速度的关系为△ E= kv2 式中k是比例系数,它与管道的形状、大小以及管道的材料有关。式中的v是平均流速。在自然间中,我们常遇到流体作湍流,如江河急流、空气流动、烟囱排烟等都是湍流。 这种变化可以用雷诺数来量化。雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的湍流流场。 流态转变时的雷诺数值称为临界雷诺数。一般管道雷诺数Re<2300为层流状态,Re>4000为湍流状态,Re=2300~4000为过渡状态。 有效地描述湍流的性质至今仍然是物理学中的一个重大难题。大多数学者认为应该从纳维-斯托克斯方程出发研究湍流。湍流对很多重大科技问题极为重要,因此,近几十年所采取的做法是针对具体一类现象建立适合它特点的具体的力学模型。例如,只适用于附体流的湍流模型;只适用于简单脱体然后又附体的流动;只适用于翼剖面尾迹的或者只适用于激波和边界层相互作用的湍流模型等等。湍流这个困难而又基本的问题,近年来日益受到了物理学界的重视。 |