加载中…
个人资料
举举
举举
  • 博客等级:
  • 博客积分:0
  • 博客访问:469,183
  • 关注人气:272
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

1/3倍频程及Matlab程序实现

(2010-05-28 11:30:00)
标签:

杂谈

倍频程是声学里人的可听频率范围内,将声音的频谱进行一定规则的集中,变成有限的几个频点对应的强度,这样描述比较起来容易,是一种公约的描述形式。

使用1/3倍频程主要是因为人耳对声音的感觉,其频率分辨能力不是单一频率,而是频带,而1/3倍频程曾经被认为是比较符合人耳特性的频带划分方法,不过现在心理声学里提出了Critical Band这么个频带划分方法,听说更符合人耳特性,但1/3倍频程仍在广泛使用。

分析频谱时,对于连续谱而言,分析某频率点上的声功率是没有意义的,因此有必要统计某一频带内的声功率。对于频带划分,倍频程和1/3倍频程是常用的划分方法之一,它们都是相对恒定带宽,例如1/3倍频程的带宽是中心频率的23%

声学及振动测量仪器中的倍频程及1/3倍频程滤波主要是用于对噪声或振动进行频谱分析用的,它们是一种等百分比带宽滤波器,与人耳的频谱分析特性相似。在噪声测量中,使用1/3oct主要是将噪声的频率分布情况更直观的表示出来。便于今后的工作开展。

百分比=(2^(m/2)-2^(-m/2))*100%

其中m就是几倍频程,1/3倍频程m等于1/3

先要知道1/3倍频程的划分方法,相关的书和国标都有公式和现成的数据表格,然后,将时间域的声信号fft变换到频率域,对定义的每个1/3倍频带的声压计算等效连续声压级。这就是1/3倍频程声压级。

 

function [g,f] = oct3spec(B,A,Fs,Fc,s,n);

% OCT3SPEC Plots a one-third-octave filter characteristics.

%    OCT3SPEC(B,A,Fs,Fc) plots the attenuation of the filter defined by

%    B and A at sampling frequency Fs. Fc is the center frequency of

%    the one-third-octave filter. The plot covers one decade on both sides

%    of Fc.

%

%    OCT3SPEC(B,A,Fs,Fc,'ANSI',N) superposes the ANSI Order-N analog

%    specification for comparison. Default is N = 3.

%

%    OCT3SPEC(B,A,Fs,Fc,'IEC',N) superposes the characteristics of the

%    IEC 61260 class N specification for comparison. Default is N = 1.

%

%    [G,F] = OCT3SPEC(B,A,Fs,Fc) returns two 512-point vectors with

%    the gain (in dB) in G and logarithmically spaced frequencies in F.

%    The plot can then be obtained by SEMILOGX(F,G)

%                              

%    See also OCT3DSGN, OCTSPEC, OCTDSGN.

 

% Author: Christophe Couvreur, Faculte Polytechnique de Mons ( Belgium)

%         couvreur@thor.fpms.ac.be

% Last modification: Sept. 4, 1997, 11:00am.

 

% References:

%    [1] ANSI S1.1-1986 (ASA 65-1986): Specifications for

%        Octave-Band and Fractional-Octave-Band Analog and

%        Digital Filters, 1993.

%    [2] IEC 61260 (1995-08):  Electroacoustics -- Octave-Band and

%        Fractional-Octave-Band Filters, 1995.   

 

if (nargin < 4) | (nargin > 6) 

  error('Invalide number of input arguments.');

end

 

ansi = 0;

iec = 0;

if nargin > 4

  if strcmp(lower(s),'ansi')

    ansi = 1;

    if nargin == 5

      n = 3;

    end

  elseif strcmp(lower(s),'cei') | strcmp(lower(s),'iec')

    iec = 1;

     if nargin == 5

      n = 1

    end

    if (n < 0) | (n > 3)

      error('IEC class must be 0, 1, or 2');

    end

  end

end

 

N = 512;

pi = 3.14159265358979;

F = logspace(log10(Fc/10),log10(min(Fc*10,Fs/2)),N);

H = freqz(B,A,2*pi*F/Fs);

G = 20*log10(abs(H));

 

% Set output variables

if nargout ~= 0

  g = G; f = F;

  return

end

 

% Generate the plot

if (ansi)                       % ANSI Order-n specification

  f = logspace(log10(Fc/10),log10(Fc*10),N);

  f1 = Fc/(2^(1/6));

  f2 = Fc*(2^(1/6));

  Qr = Fc/(f2-f1);

  Qd = (pi/2/n)/(sin(pi/2/n))*Qr;

  Af = 10*log10(1+Qd^(2*n)*((f/Fc)-(Fc./f)).^(2*n));

  semilogx(F,G,f,-Af,'--');

  legend('Filter',['ANSI order-' int2str(n)],0);

elseif (iec)                                  % CEI specification

  semilogx(F,G);

  hold on

  if n == 0

    tolup =  [ .15 .15 .15 .15 .15 -2.3 -18.0 -42.5 -62 -75 -75 ];

    tollow = [ -.15 -.2 -.4 -1.1 -4.5 -realmax -inf -inf -inf -inf -inf ];

  elseif n == 1

    tolup =  [ .3 .3 .3 .3 .3 -2 -17.5 -42 -61 -70 -70 ];

    tollow = [ -.3 -.4 -.6 -1.3 -5 -realmax -inf -inf -inf -inf -inf ];

  elseif n == 2

    tolup =  [ .5 .5 .5 .5 .5 -1.6 -16.5 -41 -55 -60 -60  ];

    tollow = [ -.5 -.6 -.8 -1.6 -5.5 -realmax -inf -inf -inf -inf -inf ];

  end

  % Reference frequencies in base 2 system

  f = Fc * [1 1.02676 1.05594 1.08776 1.12246 1.12246 1.29565 1.88695 ...

         3.06955 5.43474 NaN ];  

  f(length(f)) = realmax;

  ff = Fc * [1 0.97394 0.94702 0.91932 0.89090 0.89090 0.77181 0.52996 ...

         0.32578 0.18400 NaN ];  

  ff(length(ff)) = realmin;

  semilogx(F,G,f,tolup,'--');

  semilogx(F,G,f,tollow,'--');

  semilogx(F,G,ff,tolup,'--');

  semilogx(F,G,ff,tollow,'--');

  hold off

  legend('Filter',['IEC class ' int2str(n)],0);

else

  semilogx(F,G);

end

xlabel('Frequency [Hz]'); ylabel('Gain [dB]');

title(['One-third-octave filter: Fc =',int2str(Fc),' Hz, Fs = ',int2str(Fs),' Hz']);

axis([Fc/10 Fc*10 -80 5]);

grid on

 

function [B,A] = oct3dsgn(Fc,Fs,N);

% OCT3DSGN  Design of a one-third-octave filter.

%    [B,A] = OCT3DSGN(Fc,Fs,N) designs a digital 1/3-octave filter with

%    center frequency Fc for sampling frequency Fs.

%    The filter is designed according to the Order-N specification

%    of the ANSI S1.1-1986 standard. Default value for N is 3.

%    Warning: for meaningful design results, center frequency used

%    should preferably be in range Fs/200 < Fc < Fs/5.

%    Usage of the filter: Y = FILTER(B,A,X).

%

%    Requires the Signal Processing Toolbox.

%

%    See also OCT3SPEC, OCTDSGN, OCTSPEC.

 

% Author: Christophe Couvreur, Faculte Polytechnique de Mons (Belgium)

%         couvreur@thor.fpms.ac.be

% Last modification: Aug. 25, 1997, 2:00pm.

 

% References:

%    [1] ANSI S1.1-1986 (ASA 65-1986): Specifications for

%        Octave-Band and Fractional-Octave-Band Analog and

%        Digital Filters, 1993.

 

if (nargin > 3) | (nargin < 2)

  error('Invalide number of arguments.');

end

if (nargin == 2)

  N = 3;

end

if (Fc > 0.88*(Fs/2))

  error('Design not possible. Check frequencies.');

end

 

% Design Butterworth 2Nth-order one-third-octave filter

% Note: BUTTER is based on a bilinear transformation, as suggested in [1].

pi = 3.14159265358979;

f1 = Fc/(2^(1/6));

f2 = Fc*(2^(1/6));

Qr = Fc/(f2-f1);

Qd = (pi/2/N)/(sin(pi/2/N))*Qr;

alpha = (1 + sqrt(1+4*Qd^2))/2/Qd;

W1 = Fc/(Fs/2)/alpha;

W2 = Fc/(Fs/2)*alpha;

[B,A] = butter(N,[W1,W2]);

 

function [p,f] = oct3bank(x);

% OCT3BANK Simple one-third-octave filter bank.

%    OCT3BANK(X) plots one-third-octave power spectra of signal vector X.

%    Implementation based on ANSI S1.11-1986 Order-3 filters.

%    Sampling frequency Fs = 44100 Hz. Restricted one-third-octave-band

%    range (from 100 Hz to 5000 Hz). RMS power is computed in each band

%    and expressed in dB with 1 as reference level.

%

%    [P,F] = OCT3BANK(X) returns two length-18 row-vectors with

%    the RMS power (in dB) in P and the corresponding preferred labeling

%    frequencies (ANSI S1.6-1984) in F.

%                              

%    See also OCT3DSGN, OCT3SPEC, OCTDSGN, OCTSPEC.

 

% Author: Christophe Couvreur, Faculte Polytechnique

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有