加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

内生解释变量与工具变量法

(2006-05-15 22:04:36)
分类: 计量经济学
内生解释变量会造成严重的后果:不一致性inconstent和有偏biased,因为不满足误差以解释变量为条件的期望值为0。产生解释变量内生一般有三个原因:
一、遗漏变量
二、测量误差
三、联立性
第三种情况是无法解决的,前两种可以采用工具变量(IV)法,IV带来的唯一坏处是估计方差的增大,也就是说同时采用OLS和IV估计,则前者的方差小于后者。但IV的应用是有前提条件的:1.IV与内生解释变量相关,2.IV与u不相关。在小样本情况下,一般用内生解释变量对IV进行回归,如果R-sq值很小的话,一般t值也很小,所以对IV质量的评价没有大的问题,但是当采用大样本时,情况则相反,往往是t值很大,而R-sq很小,这时如果采用t值进行评价则可能出现问题。这时IV与内生解释变量之间的相关程度不是太大,但是如果与u之间有轻微的相关的话,则:1.导致很大的不一致性;2.有偏性,并且这种有偏性随着R-sq趋于0而趋于OLS的有偏性。
所以现在在采用IV时最好采用R-sq或F-sta作为评价标准,另外为了观测IV与u的关系,可以将IV作为解释变量放入方程进行回归,如果其他的系数没有大的变化,则说明IV满足第二个条件。
 
 
注:上述的R-sq和F-sta都是结构模型中的。

0

阅读 收藏 喜欢 打印举报/Report
前一篇:关于Tobit模型
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有