加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

今日系列:哥德巴赫猜想提出日(图)

(2014-06-07 00:01:02)
标签:

365

今日系列

哥德巴赫猜想

文化

今日系列:哥德巴赫猜想提出日(图)

今日系列:哥德巴赫猜想提出日(图)

6月7日,是哥德巴赫猜想提出日(1742年)。

在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。[1]因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a b"。1966年陈景润证明了"1 2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。

“a b”问题的推进

1920年,挪威的布朗证明了“9 9”。

1924年,德国的拉特马赫证明了“7 7”。

1932年,英国的埃斯特曼证明了“6 6”。

1937年,意大利的蕾西先后证明了“5 7”, “4 9”, “3 15”和“2 366”。

1938年,苏联的布赫夕太勃证明了“5 5”。

1940年,苏联的布赫夕太勃证明了“4 4”。

1956年,中国的王元证明了“3 4”。稍后证明了 “3 3”和“2 3”。

1948年,匈牙利的瑞尼证明了“1 c”,其中c是一很大的自然数。

1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 5”, 中国的王元证明了“1 4”。

1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 3 ”。

1966年,中国的陈景润证明了 “1 2 ”。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有