大数定律在保险的应用
(2011-10-11 14:29:39)
标签:
教育 |
分类: 统计与运筹 |
我们常说保险就像蓄水池,每个人拿出一点保险,保险公司把这些资金集中起来可以弥补少数不幸者所遭受的损失。显然,如果参与这个蓄水池机制的人越多,蓄水池的作用发挥就会越稳定。
假如某保险公司有10000个同阶层的人参加人寿保险,每人每年付120元保险费,在一年内一个人死亡的概率为0.006,死亡时,其家属可向保险公司领得10000元。试问:平均每户支付赔偿金59元至61元的概率是多少?保险公司亏本的概率有多大?保险公司每年在这项险种中利润大于40万元的概率是多少?
设
Xi表示保险公司支付给第i户的赔偿金,则。E(Xi)=60,D(Xi)=59.64(i=1,2,…,10000)诸Xi相互独立。则表示保险公司平均对每户的赔偿金E()=60,
D()=59.64×10-4,由中心极限定理,~N(60,0.07722),P{59<<61}==
2Φ(12.95)-1≈1。虽然每一家的赔偿金差别很大,但保险公司平均对每户的支付几乎恒等于60元,在59元至61元内的概率接近于1。
保险公司亏本,也就是赔偿金额大于10000×120=120(万元),即死亡人数大于120人的概率。死亡人数Y~B(10000,0.006),E(Y)=60,D(Y)=59.64。由中心极限定理,Y近似服从正态分布N(60,59.64),则P{Y>120}=1-Φ(7.77)≈0。这说明,保险公司亏本的概率几乎等于0。
如果保险公司每年的利润大于40万元,即赔偿人数小于80人。则P{Y<80}=Φ(2.59)=0.9952。可见,保险公司每年利润大于40万元的概率接近100%。
在保险市场的竞争过程中,在保证相同收益的前提下有两个策略可以采用,一是降低保险费,另一个是提高赔偿金,而采用提高赔偿金比降低保险费更能吸引投保户。

加载中…