GPT-1的效果明显,只需要极少的微调,就可以增强NLP模型的能力,减少对资源和数据的需求。同时,GPT-1也存在明显的问题,一是数据局限性,GPT-1
是在互联网上的书籍和文本上训练的,对世界的认识不够完整和准确;二是泛化性依然不足,在一些任务上性能表现就会下
第二代:更大更高更强的GPT-2。2019年推出的GPT-2,与GPT-1并没有本质上的不同(注意这一点),架构相同,使用了更大的数据集WebText,大约有40
GB的文本数据、800万个文档,并为模型添加了更多参数(达到惊人的 15
亿个参数),来提高模型的准确性,可以说是加强版或臃肿版的GPT-1。
GPT-2的出现,进一步证明了无监督学习的价值,以及预训练模型在下游NLP任务中的广泛成功,
第三代:跨越式进步的GPT-3。2020年,GPT-3的这次迭代,出现了重大的飞跃,成为与GPT-2迥然不同的物种。
首先,GPT-3的体量空前庞大,拥有超过 1750 亿个参数,是GPT-2的 117
倍;其次,GPT-3不需要微调,它可以识别到数据中隐藏的含义,并运用此前训练获得的知识,来执行下游任务。这意味着,哪怕从来没有接触过的示例,GPT-3就能理解并提供不错的表现。因此,GPT-3也在商业应用上表现出了极高的稳定性和实用性,通过云上的
API访问来实现商业化。这种入得了实验室、下得了车间的能力,使得GPT-3成为2020年AI领域最惊艳的模型之一。
当然,GPT-3也并不完美。正如联合创始人 Sam
Altman所说,GPT-3的水平仍处于早期阶段,有时候也会犯非常愚蠢的错误,我们距离真正的人工智能世界还有很长的距离。另外,GPT-3
API 的很多基础模型非常庞大,需要大量的专业知识和性能优异的机器,这使得中小企业或个人开发者使用起来比较困难。
第四代:基于理解而生成的ChatGPT。终于在2022年,OpenAI的预训练语言模型之路,又出现了颠覆式的迭代,产生了技术路线上的又一次方向性变化:基于人工标注数据+强化学习的推理和生成。
而ChatGPT在GPT
-3.5大规模语言模型的基础上,又开始依托大量人工标注数据(据说OpenAI找了40个博士来标数据),这怎么又走回监督学习的“老路”了呢?
原因是,GPT
3.5虽然很强,但无法理解人类指令的含义(比如写一段博文、改一段代码),无法判断输入,自然也就很难给出高质量的输出答案。所以OpenAI通过专业的标注人员(据说是40个博士)来写词条,给出相应指令/问题的高质量答案,在基于这些数据来调整GPT
-3.5的参数,从而让GPT -3.5具备了理解人类指令的能力。
在人工标注训练数据的基础上,再使用强化学习来增强预训练模型的能力。强化学习,简单理解就是做对了奖励、做错了惩罚,不断根据系统的打分来更新参数,从而产生越来越高质量的回答。所以这几天很多人在互动中发现,ChatGPT会承认错误、会修改自己的答复,这正是因为它具备从人类的反馈中强化学习并重新思考的能力。
自2018年谷歌发布BERT以来,预训练大模型经过三年的发展,以强大的算法效果,席卷了NLP为代表的各大AI榜单与测试数据集。2020年OpenAI发布的NLP大模型GPT-3,实现了千亿级数据参数。GPT-3除了具备传统的NLP能力之外,还可以算术、编程、写小说、写论文摘要,一时之间成为科技圈中的爆点。到2021年,我们可以看到各大学术机构、科技企业都在打造自己的大模型,并且对其能力边界、技术路径进行了极大拓展。
加载中,请稍候......