计算太阳位置(2)
(2009-03-13 19:01:16)
标签:
杂谈 |
分类: 天文计算 |
6. 赤道坐标
天空的赤道坐标建立在行星的旋转轴上。 赤道坐标用赤经α (alpha)和赤纬 δ (delta)表示。赤纬决定物体在行星的哪部分能被看见,赤经决定何时能被看见。
由黄道坐标计算赤道坐标的公式如下:
(公式8) sin α cos δ = sin λ cos ε cos β − sin β sin ε
(公式9) cos α cos δ = cos λ cos β
(公式10) sin δ = sin β cos ε + cos β sin ε sin λ
对太阳有βsun = 0,得
(公式11) αsun = arctan (sin λsun cos ε, cos λsun)
(公式12) δsun = arcsin (sin λsun sin ε)
定义:
(公式13) αsun = λsun + S
若ε足够接近于0°或180°,且忽略小项,则近似计算赤经αsun和黄经λsun:
(公式14) arctan(tan(λ) cos(ε)) = λ − ((¼) ε² + (1⁄24) ε4 + (17⁄2880) ε6) sin(2 λ) + ((1⁄32) ε4 + (1⁄96) ε6) sin(4 λ) − (1⁄192) ε6 sin(6 λ) + O(ε8).
(公式15) αsun = λsun + S ≈ λsun + A2 sin(2 λsun) + A4 sin(4 λsun) + A6 sin(6 λsun)
赤纬δsun和黄道距离:
(公式16) arcsin(sin(λ) sin(ε)) = (ε − (1⁄6) ε³ + (1⁄120) ε5) sin(λ) + ((1⁄6) ε³ − (1⁄12) ε5) sin(3 λ) + (3⁄40) ε5 sin(5 λ) + O(ε7)
(公式17) δsun ≈ D1 sin(λsun) + D3 sin(λsun)³ + D5 sin(λsun)5
其中A2, A4, A6, D1, D3,和D5 (单位度)列于下表. EA和ED列为计算αsun和δsun的最大误差
A2 |
A4 |
A6 |
EA |
D1 |
D3 |
D5 |
ED |
|
Mercury |
−0.0000 |
0.0000 |
0.0000 |
0.0000 |
||||
Venus |
−0.0305 |
0.0001 |
2.6427 |
0.0009 |
0.0036 |
|||
Earth |
−2.4680 |
0.0530 |
−0.0014 |
0.0003 |
22.8008 |
0.5999 |
0.0493 |
0.0003 |
Mars |
−2.8605 |
0.0712 |
−0.0022 |
0.0004 |
24.3870 |
0.7331 |
0.0706 |
0.0011 |
Jupiter |
−0.0424 |
0.0001 |
3.1151 |
0.0015 |
0.0034 |
|||
Saturn |
−3.2364 |
0.0911 |
−0.0031 |
0.0009 |
25.7790 |
0.8649 |
0.0951 |
0.0010 |
Uranus |
−42.5725 |
12.8039 |
−2.6057 |
17.6902 |
56.9067 |
−0.8355 |
26.1482 |
3.34 |
Neptune |
−3.5195 |
0.1077 |
−0.0039 |
0.0163 |
26.7577 |
0.9662 |
0.1164 |
0.060 |
Pluto |
−17.1633 |
2.4178 |
−0.3035 |
0.5052 |
48.3114 |
4.7880 |
4.3582 |
0.19 |
天王星的近似很差,因其几乎躺在轨道上。最好使用完全公式计算天王星。
As seen from Earth, and using equation 11, we find: αsun = arctan(sin(12.0321°) * cos(23.45°), cos(12.0321°)) = 11.0639°, and with equation 12 we find δsun = arcsin(sin(12.0321°) * sin(23.45°)) = 4.7585°.
As seen from Mars, we find αsun = arctan(sin(13.0435°) * cos(25.19°), cos(13.0435°)) = 11.8398° and δsun = arcsin(sin(13.0435°) * sin(25.19°)) = 5.5123°.
Using equations 15 and 17 we find for the Earth αsun = 12.0321° − 2.468° * sin(2 * 12.0321°) + 0.053° * sin(4 * 12.0321°) − 0.0014° * sin(6 * 12.0321°) = 11.0639° and δsun = 22.8008° * sin(12.0321°) + 0.5999° * sin(12.0321°)³ + 0.0493° * sin(12.0321°)5 = 4.7585° and for Mars αmars = 13.0435° − 2.8605° * sin(2 * 13.0435°) + 0.0712° * sin(4 * 13.0435°) − 0.0022° * sin(6 * 13.0435°) = 11.8397° and δmars = 24.387° * sin(13.0435°) + 0.7331° * sin(13.0435°)³ + 0.0706° * sin(13.0435°)5 = 5.5123°, so the approximations yield practically the same results in these cases as the full equations 11 and 12.
天体在天空中的位置依赖于你所处的地理位置(纬度φ [phi] 北为正, 和经度lw 西为正)、天体的赤道坐标α和δ、以及行星在你的位置相对于恒星的旋转角度。这个角度用恒星时来表示。恒星时就是通过天球子午线的恒星的赤经。恒星时等于:
(公式18) θ = θ0 + θ1 * (J − J2000) − lw
with θ0 and θ1 from the next table.
θ0 |
θ1 |
|
Mercury |
13.5964 |
6.1385025 |
Venus |
215.2995 |
−1.4813688 |
Earth |
280.1600 |
360.9856235 |
Mars |
313.4803 |
350.89198226 |
Jupiter |
146.0727 |
870.5366420 |
Saturn |
174.3479 |
810.7939024 |
Uranus |
17.9705 |
−501.1600928 |
Neptune |
52.3996 |
536.3128492 |
Pluto |
56.3183 |
−56.3623195 |
For the Netherlands on Earth we find θearth = 560529.8477° − (−5°) = 14.8477° (after subtracting multiples of 360°) and for Gusev on Mars θmars = 544897.8367° − 184.6° = 33.2367°.
天体在天空中的位置由水平线上的高度角h 和方位角A 来表示。水平线上高度角为0,正天顶高度角为 +90° 天底为−90°。方位角为水平的方向,从南开始转向西。正南方位角0°,正西 +90°,正北+180°,正东+270°。高度角和方位角是地平坐标。由赤道坐标计算地平坐标,使用以下公式:
(公式19) sin A cos h = sin H cos δ
(公式20) cos A cos h = cos H sin φ cos δ − sin δ cos φ
(公式21) sin h = sin φ sin δ + cos φ cos δ cos H
(公式23) A = arctan(sin H, cos H sin φ − tan δ cos φ)
其中H 为时角,指示多长时间之前(使用恒星时量度),天体经过子午线。
For the Netherlands on Earth we find H = 3.7838° so A = arctan(sin(3.7838°), cos(3.7838°) * sin(52°) − tan(4.7585°) * cos(52°)) = 5.1302° and h = arcsin(sin(52°) * sin(4.7585°) + cos(52°) * cos(4.7585°) * cos(3.7838°)) = 42.6542°.
For Gusev on Mars we find H = 21.3969° and A = arctan(sin(21.3969°), cos(21.3969°) * sin(−14.6°) − tan(5.5123°) * cos(−14.6°)) = 131.9648° and h = arcsin(sin(−14.6°) * sin(5.5123°) + cos(−14.6°) * cos(5.5123°) * cos(21.3969°)) = 60.7657°. At 12:00 UTC on 1 April 2004, the Sun as seen from the Netherlands stands about 5° west of south at 43° above the horizon, and as seen from the Gusev crater on Mars the Sun then stands about 3° south by northwest at 61° above the horizon.
天体通过天球子午线的时刻称为中天。太阳中天的时间为正午,太阳时12点,这时太阳的时角H = Htarget 等于0。有公式:
(公式24) θ = αsun + Htarget mod 360°
为后面使用方便,在公式中保留H 。使用公式24和前面的公式,可以得到通过儒略日J猜测中天时间,计算θ和αsun看他们满足不满足公式24。如果不满足,那么需要调整J。总的说来,这是一个寻找正确 J的过程。进一步,公式24没有帮助你理解对于太阳中天什么是最重要的。你可以通过忽略小项来得到这种认识。答案可能不那么精确,但是清楚的指出了解的正确样式,通常也容易计算,并可以为寻找J真值提供了一个非常好的猜测开始值。
由公式7,5,15,18,忽略小项,可以得到
(公式25) Jtransit ≈ J2000 + (Htarget + M0 + Π + 180° − θ0 + lw + C1 sin M + A2 sin(2 Lsun))/(θ1 − M1) mod 360°/(θ1 − M1) = J2000 + J0 + (Htarget + lw) * J3/360° + J1 sin M + J2 sin(2 Lsun) mod J3
其中
(公式27) J0 = (M0 + Π + 180° − θ0) J3/360° mod J3
如果已知λSun,可以用它代替公式25中的LSun ,这会更精确。J0 提供太阳中天的日期和时间。 J1 显示由于轨道偏心率e而引起的中天时间的改变。 J2 指示由于黄赤交角ε而引起的中天时间改变。 J3 是太阳日的平均长度 (两次中天之间)。所有时间都用24小时的地球日量度。
J0 |
J1 |
J2 |
J3 |
|
Mercury |
45.3495 |
11.4556 |
175.9386 |
|
Venus |
87.8650 |
−0.2516 |
0.0099 |
−116.7505 |
Earth |
0.0009 |
0.0053 |
−0.0069 |
1.0000000 |
Mars |
0.9044 |
0.0305 |
−0.0082 |
1.027491 |
Jupiter |
0.3345 |
0.0064 |
0.4135775 |
|
Saturn |
0.0766 |
0.0078 |
−0.0040 |
0.4440276 |
Uranus |
0.1027 |
−0.0106 |
0.0849 |
−0.7183165 |
Neptune |
0.3841 |
0.0019 |
−0.0066 |
0.6712575 |
Pluto |
3.8479 |
−0.5023 |
0.3045 |
−6.386797 |
为了计算太阳在儒略日J附近中天的日期和时间,可以按照下面的步骤进行:
- 计算
(公式31) n(*) = (J − J2000 − J0)/J3 − (Htarget + lw)/360°
然后取n 为最接近n(*)的整数。
- 计算
(公式32) J(*) = J2000 + J0 + (Htarget + lw) * J3/360° + J3 * n
其中的J(*) 是对太阳在儒略日J 附近中天时间的合理估计,但并不包括J1 和J2 订正。
- 计算J(*)对应的M 和Lsun ,通过下式得到一个中天时间的更好估计。
(公式33) Jtransit ≈ J(*) + J1 sin M + J2 sin(2 Lsun)
- 如果想要更好的精度,那么计算Jtransit时角时刻,使用Jtransit + (Htarget − H)/360° * J3 作为 Jtransit.的改进值 ,重复这一步直至Jtransit 不再变化。
- Jtransit 是儒略日,是在12:00 UTC为整数的一个日数。因此儒略日2453096.9898 小数点后的 .9898 表示下一个整数日之前.0102天,也就是说,0.0102 days = 0.0102*24 = 0.245 小时= 0.0102*24*60 = 大约 15 分钟后是12:00 UTC,即大约 11:45 UTC。
For our example, we looked near J = 2453097. Which solar transit is closest to that in the Netherlands and in Gusev crater on Mars?
For the Netherlands (lw = −5°) we find n(*) = (2453097 − 2451545 − 0.0009)/1 − (−5°)/360° = 1552.013, so n = 1552, so J(*) = 2451545 + 0.0009 + (−5°) * 1⁄360° + 1 * 1552 = 2453096.9870 (with Htarget = 0. For the value of M for J(*) we take the value we found for J, because the difference is negligible, so M = 87.1807° and Lsun = 87.1807° + 102.9372° + 180° = 370.1179° = 10.1179°. With that, we find Jtransit = 2453096.9869 + 0.0053 * sin(87.1807°) − 0.0069 * sin(2 * 10.1179°) = 2453096.9898. If you use the repetition method to increase the accuracy, then you get Jtransit = 2453096.9895. The solar transit at 5° east longitude happens on 1 April 2004 around 11:45 UTC.
For the Gusev crater on Mars (lw = 184,6°) we find n(*) = (2453097 − 2451545 − 0.9044)/1.02749 − 184.6°/360° = 1509.084, so n = 1509, so J(*) = 2451545 + 0.9044 + 184.6° * 1.02749⁄360° + 1509 * 1.02749 = 2453096.9137. For M we take the value that we found earlier, so M = 112.6531° and Lsun = 112.6531° + 70.9812° + 180° = 363.6343° = 3.6343°. With that, we find Jtransit = 2453096.9137 + 0.0305 * sin(112.6531°) − 0.0082 * sin(2 * 3.6343°) = 2453096.9408. Using the repetition method, this becomes Jtransit = 2453096.9392. The solar transit in Gusev crater happens on 1 April 2004 around 10:32 UTC.