加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

石墨烯·改变世界的新材料

(2010-10-06 07:18:05)
标签:

杂谈

分类: 剪报备查

http://imgsrc.baidu.com/baike/abpic/item/906289dd95758e775982ddd1.jpg    一片碳,看似普通,厚度为单个原子,促使两位科学家赢得2010年度诺贝尔物理学奖。这种全新材料名为“石墨烯”。石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬,甚至比钻石还要坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。诺贝尔物理学奖评审委员会在向媒体发布的材料中介绍,石墨烯不仅“最薄、最强”,而且导电性能类似金属铜,导热性能超过所有已知材料石墨烯材料被普遍认为会最终替代硅,从而引发电子工业的再次革命。英国曼彻斯特大学科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫因在石墨烯方面的研究荣获2010年诺贝尔物理学奖。  
  石墨烯将拥有众多令人神往的发展前景。它不仅可以开发制造出纸片般薄的超轻型飞机材料、可以制造出超坚韧的防弹衣,甚至还为“太空电梯”缆线的制造打开了一扇“阿里巴巴”之门。

  石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。
  石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似。

  铅笔中竟然包含着地球上强度最高的物质!法国皇帝拿破仑曾经说过:“笔比剑更有威力”,然而他在200年前说这话的时候绝对不会想到,人类使用的普通铅笔中竟然包含着地球上强度最高的物质!美国哥伦比亚大学两名华裔科学家最近发现,铅笔石墨中一种叫做石墨烯的二维碳原子晶体,竟然比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍(他们使用原子尺寸的金属和钻石探针对它们进行穿刺,从而测试它们的强度)。人们熟悉的铅笔是由石墨制成的,而石墨则是由无数只有碳原子厚度的“石墨烯”薄片压叠形成,石墨烯是一种从石墨材料中剥离出的单层碳原子面材料,是碳的二维结构。
  尽管石墨在大自然中非常普遍,并且石墨烯是人类已知强度最高的物质,但科学家可能仍然需要花费数年甚至几十年时间,才能找到一种将石墨转变成大片高质量石墨烯“薄膜”的方法,从而可以用它们来为人类制造各种有用的物质。石墨烯具有一系列独一无二的特性,这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。

    石墨烯的合成方法主要有两种:机械方法和化学方法。机械方法包括微机械分离法、取向附生法和加热SiC的方法;化学方法是化学分散法。

  最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。2004年Novoselovt等用这种方法制备出了单层石墨烯,并可以在外界环境下稳定存在。典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。但缺点是此法是利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。
    取向附生法(晶膜生长)是利用生长基质原子结构“种”出石墨烯,首先让碳原子在1150 ℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“孤岛”布满了整个基质表面,最终它们可长成完整的一层石墨烯。第一层覆盖80 %后,第二层开始生长。底层的石墨烯会与钌产生强烈的交互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。另外Peter W.Sutter 等使用的基质是稀有金属钌。
    加热SiC法是通过加热单晶6H-SiC脱除Si,在单晶面上分解出石墨烯片层。具体过程是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250~1450℃后恒温1min~20min,从而形成极薄的石墨层,经过几年的探索,Berger等人已经能可控地制备出单层或是多层石墨烯。其厚度由加热温度决定,制备大面积具有单一厚度的石墨烯比较困难。一条以商品化碳化硅颗粒为原料,通过高温裂解规模制备高品质无支持(Free standing)石墨烯材料的新途径。通过对原料碳化硅粒子、裂解温度、速率以及气氛的控制,可以实现对石墨烯结构和尺寸的调控。这是一种非常新颖、对实现石墨烯的实际应用非常重要的制备方法。
  化学分散法是将氧化石墨与水以1mg/mL的比例混合,用超声波振荡至溶液清晰无颗粒状物质,加入适量肼(有机化合物的一类,是NH2-NH2烃基衍生物的统称,一种无色发烟的、具有腐蚀性和强还原性的液体化合物,它是比氨弱的碱,通常由水合肼脱水制得,主要用作火箭和喷气发动机的燃料部分,用在制备盐(如硫酸盐)及有机衍生物中)在100℃回流24h ,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯。Sasha Stankovich 等利用化学分散法制得厚度为1nm左右的石墨烯。
  石墨烯---改变世界的新材料:通过显微镜在大量的薄片中寻找到了理论厚度只有0.34纳米(约为头发直径的二十万分之一)的石墨烯,这一发现在科学界引起了巨大的轰动,不仅是因为它打破了二维晶体无法真实存在的理论预言,更为重要的是石墨烯的出现带来了众多出乎人们意料的新奇特性,使它成为继富勒烯和碳纳米管后又一个里程碑式的新材料。而英国曼彻斯特大学的A. Geim教授也凭借这一发现获得了2008年诺贝尔物理学奖的提名。

  石墨烯这一目前世界上最薄的物质首先让凝聚态物理学家们惊喜不已。由于碳原子间的作用力很强,因此即使经过多次的剥离,石墨烯的晶体结构依然相当完整,这就保证了电子能在石墨烯平面上畅通无阻的迁移,其迁移速率为传统半导体硅材料的数十至上百倍。这一优势使得石墨烯很有可能取代硅成为下一代超高频率晶体管的基础材料而广泛应用于高性能集成电路和新型纳米电子器件中。目前科学家们已经研制出了石墨烯晶体管的原型,并且乐观地预计不久就会出现全由石墨烯构成的全碳电路并广泛应用于人们的日常生活中。此外,二维石墨烯材料中的电子行为与三维材料截然不同,无法用传统的量子力学加以解释,而必须运用更为复杂的相对论量子力学来阐释。因此石墨烯为相对论量子力学的研究提供了很好的平台,而在这之前科学家们只能在高能宇宙射线或高能加速器中对该理论进行验证,如今终于可以在普通环境下轻松开展研究了。石墨烯还具有超高的强度,碳原子间的强大作用力使其成为目前已知的力学强度最高的材料,并有可能作为添加剂广泛应用于新型高强度复合材料之中。石墨烯良好的导电性及其对光的高透过性又让它在透明导电薄膜的应用中独具优势,而这类薄膜在液晶显示以及太阳能电池等领域至关重要。另外,石墨烯在高灵敏度传感器和高性能储能器件方面也已经展示出诱人的应用前景。

    石墨烯的出现不仅给科学家们提供了一个充满魅力与无限可能的研究对象,更让我们对其充满了期待,也许在不久的将来,石墨烯就会为我们搭建起更加便捷与美好的生活。

0

阅读 收藏 喜欢 打印举报/Report
前一篇:中国人的素质
后一篇:预料之内
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有