什么是虚拟变量?(转)
(2010-12-13 10:19:32)分类: 统计 |
虚拟变量(Dummy Variable),又称名义变量或哑变量,是量化了的质变量,通常取值为0或1。在研究一个因变量的时候,解释变量中除了定量变量,有时候会有一些定性变量,比如性别、年龄、宗教、民族、婚姻状况、教育程度等。这些定性变量也可以成为指标变量或分类变量。此时需要使用虚拟变量。引入哑变量可使线形回归模型变得更复杂,但对问题描述更简明,一个方程能达到俩个方程的作用,而且接近现实。如果某个因素有n种选择,则将其用哑变量引入模型时,要设置n-1个哑变量,以避免完全的多重共线性。如性别的选择有两种,则引入一个哑变量,是男则数值为1,否则为0,当然也可以设置为女为1,否则为0。季节的选择有4个,则引入3个哑变量,哑变量1:春为1,否则为0.哑变量2:夏为1,否则为0.哑变量3:秋为1,否则为0.
对于有序变量,如轻、中、重,则要酌情考虑。如果样本量足够大的话,也进行哑变量化,这样可以得到不同级别的差异。但是如果样本量不够大时,哑变量化造成变量数目上升,使回归结果变得不可靠,只能适得其反。
哑变量设置的原则
在模型中引入多个哑变量时,哑变量的个数应按下列原则确定:如果有n种互斥的属性类型,在模型中引入(n-1)个哑变量。例如,文化程度分小学、初中、高中、大学、研究生5类,引用4个哑变量
回归分析
在spss中,logistics回归中,有专门的选项来处理需要哑变量化的变量,只需单击“Categorical..”进行设置即可。但是对于多元线性回归就没有那么幸运了。
用computer或recode设置一组哑变量。由于哑变量是一个整体变量,所以进行变量筛选时必须共同进退。因此,将所有哑变量同一般变量一下直接进行筛选是不对的,会出现一部分变量进入一部分变量未进入的情形。解决的方法是:将同一因素下的哑变量进行归组,在纳入方法中选择了“ENTER”来确保这些哑变量同进同出,而其它连续型变量和二分类变量则归为另一组,纳入方法为STEPWISE。然后在没有纳入这组哑变量的情况下再做一次STEPWISE,再来比较是不是应该纳入这组哑变量。
在sas中,哑变量的设置需要另外写程序,但是在回归程序中,则比较简单。eg.因变量y,自变量x1,x2,哑变量组x31 x32 x33,
proc reg;
run;