排列组合问题(一) 枚举法
导言:
当计算的总数量不多时,我们通常把要计数的所有对象一一列举出来,从而求出其总数,这种最简单、最基本的计数方法叫做枚举法,或穷举法、列举法、分组法
使用枚举法计数时,要注意以下几点:①初步估计,总的数目不太多,又没有更简捷的办法②为了使枚举的结果不重复又不遗漏,我们要抓住对象的特征,选择适当的标准分类,有次序、有规律地列举
例1.现有1克、2克、4克、10克的砝码各一个,那么在天平上能称出多少不同重量的物体(只允许砝码放在天平的右边的盘子里)
解析:按使用砝码的个数进行分类列举
(1)、若使用一个砝码能称:1克、2克、4克、10克,共4种重量物体
(2)、若使用二个砝码能称:1+2;1+4;1+10;2+4;2+10;4+10克,共6种重量
(3)、若使用三个砝码能称:1+2+4;1+2+10;1+4+10;2+4+10克,共4种重量
(4)若使用四个砝码能称:1+2+4+10=17克,共1种重量物体
所以,总共能称:4+6+4+1=15种不同重量的物体
思考:如果把题目中括号里的条件去掉,又能称多少种不同重量的物体?
例2、有一张五元、4张贰元和8张一元人民币,从中取出9元,共有多少种不同的取法?
解析:按从大到小,从少到多的次序,先取五元,再取贰元,后取一元的顺序,把所有情况通常列表的形式一一列举出来
5 元
|
2 元
|
1 元
|
1
|
0
|
4
|
1
|
1
|
2
|
0
|
2
|
0
|
0
|
1
|
7
|
0
|
2
|
5
|
0
|
3
|
3
|
0
|
4
|
1
|
从上面的列举中可以看出:取9元钱共有7种不同的取法
例3、从1—10的10个数中,每次取2个数,要使它们的和大于10,一共有多少种取法?
解析:可从小到大依次思考
① 1+10
② 2+9,2+10
③ 3+8,3+9,3+10
④ 4+7,4+8,4+9,4+10
⑤ 5+6,5+7,5+8,5+9,5+10
⑥ 6+7,6+8,6+9,6+10
⑦ 7+8,7+9,7+10
⑧ 8+9,8+10
⑨ 9+10
所以,共有1+2+3+4+5+4+3+2+1=25种不同的取法
例4、在1—400的自然数中,数字“2”出现了多少次?
解析:在1—400这400个数中,“2”可能出现在个位、十位、百位上,我们就按这个来分类列举
在个位上:2、12、、、92;102、112、、、192;202、212、、、292;302、312、、、392,共10×4=40次
在十位上:20、21、、、29;120、121、、、129;220、221、、、229;320、321、、、329;共10×4=40次
在百位上:200—299,共100次
所以,“2”总共出现了40+40+100=180次
思考:仔细思考下题,看看与例4有何区别:在1—400的自然数中,含有数字“2”的数字有多少个?
例5、下图中有6个点,9条线段,一只蚂蚁从A点出发,沿差某条线段爬到C点,行进中,同一点或同一线段只能经过一次,这只蚂蚁最多有多少种不同的爬法
解析:从A点出发有三种路可以走,我们就按这个进行分类列举
A E D
B F C
(注示:上图中,AF间有一连线,EC间也有一连线)
①A—E—D—C;A—E—C;A—E—F—C,有三种爬法
②A—F—E—D—C;A—F—E—C;A—F—C,有三种爬法
③A—B—F—E—D—C;A—B—F—E—C;A—B—F—C,有三种爬法
所以,共有9种不同的爬法
例6、从学校到少年宫有4条东西向的马路和3条南北向的马路,小明从学校步行到少年宫(只许向东或向南行步),最多有多少种走法?
学校 A B
少年宫 解析:在图形ABCD中,到B只有一种走法,到C也只有一种走法,到D有两种走法
在图形CDEF中,到E只有一种走法,到D有两种走法,到F有三种走法
我们可以发现规律:通过任何一个交叉点的路线总数等于该点左、上方的两邻交叉点的路线的总和,例如,通过点F的路线总和,会等于F点左方的点E、上方的点D通过路线的总和,1+2=3种,按这个规律,我们依次计数下去,到少年宫应有6+4=10种不同的走法
小结:在计数时,不遵循数序规律,东举一个,西举一个,不按顺序列举,往往会出现遗漏或重复,有序的思考、合理的分类,才是解决这类问题最关键的思维。
排列组合问题(二) 加法原理和乘法原理
导言:
加法原理和乘法原理,是排列组合中的二个基本原理,在解决计数问题中经常运用。把握这两个原理,并能正确区分这两个原理,至关重要。
一、概念
(一)加法原理
如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。
例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?
解析:把乘坐不同班次的车、船称为不同的走法。要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法
(二)乘法原理
如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。
例:用1、2、3、4这四个数字可以组成多少个不同的三位数?
解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。
选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法
选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法
选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法
单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理
所以,可以组成:4×3×2=24(个)不同的三位数
二、加法原理和乘法原理的区别
什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。
三、加乘法原理的综合应用
有时候,做某件事有几类方法,而每一类方法又要分几个步骤完成。在计算做这件事的方法时,既要用到加法原理,也要用到乘法原理,这就是加乘法原理的综合应用。
例:从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走,那么,从甲地到丙地共有多少种走法?
解析:从甲地到丙地共有两大类不同的走法:可以直接从甲地到丙地,也可以从甲地先到乙地再到丙地,选择任何一类方法,都可以从甲地到丙地,符合加法原理;而在第二类方法中(即从甲地先到乙地再到丙地),又分两步完成:第一步从甲地先到乙地,有4种走法,第二步再从乙地到丙地,有2种走法,这里的任何一种方法都不能完成从甲地到丙地这件事,符合乘法原理,这时共有4×2=8种走法。
所以从甲地到丙地总的走法=第一类方法+第二类方法
=3+4×2=11(种)
四、加法原理和乘法原理的应用
例1.(数字排列问题)用数字1、2、3、4、5可以组成多少个没有重复数字的三位数?
解析:组成一个三位数,要分三个步骤,先选百位数,再选十位数,最后选个位数,使用乘法原理
5×4×3=60(个)
例2.(数字排列问题)一种电子表6点24分30秒时,显示数字是:6:2430,那么从8点到9点这段时间里,此表5个数字都不相同的情况一共有多少种?
解析:在8点到9点间,电子表的第一位数字肯定8,在这段时间内是固定不变的,可以不考虑;第2位和第4位的取值范围只能是0、1、2、3、4、5,第3位和第5位只能从0、1、2、3、4、5、6、7、9。题中要求5个数字各不相同。所以我们要分开来考虑:
①第2位到第5位只取0----5中的数,有6×5×4×3=360种情况
②第2位和第4位只取0---5中的数,而第3位和第5位只取6、7、9中的数,有6×5×3×2=180种情况
③第2位、第3位和第4位只取0---5中的数,第5位只取6、7、9中的数,有6×5×4×3=360种情况
④第2位、第4位和第5位只取0---5中的数,第3位只取6、7、9中的数,有6×5×4×3=360种情况
所以,此表在8到9点间5个数字不同的情况共有:360+180+360+360=1260种
例3.(数字排列问题)从1到400的所有自然数中,不含数字3的自然数有多少个?
解析:在一位数前面添两个零,如把2写成002;在两位数前面添一个零,如把12写成012,这样,1—400中的数全成了“三位数”了,除去数字400外,考虑不含数字“3”的这样的“三位数”的个数,分三步考虑:百位、十位、个位上不含数字“3”,符合乘法原理。百位上可取0、1、2,有三种取法;十位上都可取0、1、2、4、5、6、7、8、9,有9种取法;个位与十位情况一样,也有9种取法。根据乘法原理,这样的数有:3×9×9=243(个)。数“000”不合要求,另外还需要补上符合要求的数“400”,所以不含数字“3”的自然数有:243-1+1=243(个);(提示:这243个数中,有首位是“0”的,把“0”删掉,就成了一位数和两位数,不影响最后的个数。)
例4.(站队排列问题)有6个同学排成一排照相,共有多少种不同的站法?
解析:6人中任何一位的位置换了,就是一种站法。把这6个位置用字母表示为:A、B、C、D、E、F。要排成一排,要分六步,依次排A、B、C、D、E、F这六个位置,使用乘法原理;A位置中有6种站法,B位置中就只剩5种站法、、、、、如此下去,F位置上就只剩1种站法,根据乘法原理,总的站法是:6×5×4×3×2×1=720种不同的站法
思考:看看下题与例4有何区别,又如何解答
A、B、C、D、E 5人排成一排,如果C不站在中间,一共有多少有种不同的排法?
例5.(取物排列问题)有5件不同的上衣,3条不同的裤子,4顶不同的帽子,从中取出一顶帽子、一件上衣和一条裤子配成一套装束,最多有多少种不同的装束?
解析:要完成一套装束要分三步完成,先取帽子,再取上衣,最后取裤子,而每一步分别有4、5、3种不同的方法,根据乘法原理,共有4×5×3=60种不同的装束
例6.(信号排列问题)有5面颜色不同的小旗,任意取3面排成一行表示一种信号,问:一共可以表示多少种不同的信号?
解析:一种信号上有三个位置,要完成一种信号要分三步选好这三个位置上的小旗。而每个位置上依次有5、4、3种不同的选小旗的选法,根据乘法原理,一共可以表示:5×4×3=60种不同的信号。
例7.(涂色问题)如图,用红、绿、蓝、黄四色去涂编号为1、2、3、4号的长方形,要求任何相邻的两个长方形的颜色都不相同,一共有多少种不同的涂法?
解析:要分4种情况考虑:
① 1、2、3、4号长方形颜色都不相同,根据乘法原理,有4×3×2×1=24种涂法
②只有1、4号长方形同色,有4×3×2=24种
③只有2、3号长方形同色,有4×3×2=24种
④2、4和1、3号长方形分别同色,有4×3=12种
最后用加法原理
共有24+24+24+12=84种不同的涂法
例8.深圳市的电话号码全是8位数,若前3位只能用1----9这9个数字,则深圳市可以安装多少台不同的电话号码的电话?
解析:要确定一个电话号码,就必须确定8位数上各个位置的数字,要分八个步骤完成。使用乘法原理。根据题目要求,先确定电话号码前3位数字的取法,由于数字可以重复,前3位上的每一位置上都可以取1、2、3、4、5、6、7、8、9中的一个数,各有9种取法。电话号码中的后5位的每一位置上都可以取0、1、2、3、4、5、6、7、8、9,各有10种取法。
根据乘法原理,共有不同的电话号码的电话:9×9×9×10×10×10×10×10=72900000台
例9.(棋子排列问题)如图,现在要把A、B、C、D、E 5个棋子放在方格里,每行和每列只能出现一个棋子,一共有多少种放法?
解析:要将5个棋子放入格子中,要分5步完成。第一步先放A,有5×5=25个方格就有25种不同的放法;第二步放B,对应A的放法,由于不能在同一行与同一列,B放的行数和列数都会减少1,所以只能放在4×4=16个格子里,有16种放法;同理可推出,第三步放C,有3×3=9种放法;第四步放D,有2×2=4种放法;第五步放E,有1×1=1种放法。根据乘法原理。总的放法有:25×16×9×4×1=14400种