TSP问题遗传算法通用Matlab程序
(2009-12-27 21:25:35)
标签:
杂谈 |
分类: 智能优化算法 |
程序一:主程序
%TSP问题(又名:旅行商问题,货郎担问题)遗传算法通用matlab程序
%D是距离矩阵,n为种群个数
%参数a是中国31个城市的坐标
%C为停止代数,遗传到第 C代时程序停止,C的具体取值视问题的规模和耗费的时间而定
%m为适应值归一化淘汰加速指数,最好取为1,2,3,4,不宜太大
%alpha为淘汰保护指数,可取为0~1之间任意小数,取1时关闭保护功能,建议取0.8~1.0之间的值
%R为最短路径,Rlength为路径长度
function [R,Rlength]=geneticTSP(D,a,n,C,m,alpha)
[N,NN]=size(D);
farm=zeros(n,N);%用于存储种群
for i=1:n
end
R=farm(1,:);
subplot(1,3,1)
scatter(a(:,1),a(:,2),'x')
pause(1)
subplot(1,3,2)
plotaiwa(a,R)
pause(1)
farm(1,:)=R;
len=zeros(n,1);%存储路径长度
fitness=zeros(n,1);%存储归一化适应值
counter=0;
while
counter
end
Rlength=myLength(D,R);
subplot(1,3,3)
plotaiwa(a,R)
程序二:计算邻接矩阵
%输入参数a是中国31个城市的坐标
%输出参数D是无向图的赋权邻接矩阵
function D=ff01(a)
[c,d]=size(a);
D=zeros(c,c);
for i=1:c
end
程序三:计算归一化适应值
%计算归一化适应值的子程序
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
end
程序四:交叉和变异的子程序
%交叉算法采用的是由Goldberg和Lingle于1985年提出的PMX(部分匹配交叉)
function [a,b]=intercross(a,b)
L=length(a);
if L<=10%确定交叉宽度
elseif
((L/10)-floor(L/10))>=rand&&L>10
else
end
p=unidrnd(L-W+1);%随机选择交叉范围,从p到p+W
for i=1:W%交叉
end
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;
程序五: 计算路径的子程序
%该路径长度是一个闭合的路径的长度
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
end
程序六:用于绘制路径示意图的程序
function plotaiwa(a,R)
scatter(a(:,1),a(:,2),'x')
hold on
plot([a(R(1),1),a(R(31),1)],[a(R(1),2),a(R(31),2)])
hold on
for i=2:length(R)
end

加载中…