生活—问题—生活
——《长方体的体积》教学设计
【教学目标】
1.知识与技能目标:使学生理解并掌握长方体的体积计算方法,能运用长方体的体积计算公式求出长方体物体的体积。培养学生的归纳、抽象概括能力。
2.情感目标:培养学生学习数学的兴趣,使学生热爱数学,提高学生的问题意识,增强学生应用数学的意识,使学生学会与人交往与人合作。
3、价值目标:使学生体会数学与生活的联系,初步学会运用所学的数学知识和方法解决一些简单实际问题。
【设计思路】
《数学课程标准》中强调要让学生“人人学习有用的数学,”“把数学作为人们日常生活中交流信息的手段和工具,”“重视从学生的生活经验和已有知识中学习数学和理解数学。”“要让学生体会数学与生活的联系,初步学会运用所学的数学知识和方法解决生活中简单的实际问题。”因此在教学设计上我们应从学生已有的生活经验和认知水平出发,善于挖掘数学中的生活原型,选择学生熟悉的身边生活事例作为教学资源,作为学生研究实践的“源”,大胆尝试使用分组实践操作的教学方法,为学生提供动手实践的机会,最大限度地激发学生参与学习过程,以“动”促“思”,改变传统的班级授课模式,使学生享受到学习的快乐,领悟到知识的情趣。
【课前准备】
每组准备一个盒装牛奶的箱子,一盒牛奶,12个1立方厘米的小正方体,一张学习记录卡。
【教学流程】
一、
挖掘生活原型,创设问题情境。
1.先让学生猜一猜一个箱子最多能装多少盒牛奶?
2.通过摆一摆验证自己的猜测。
3.撕开被教师事先封住的标签,再次验证猜与摆的结果。
4.还有其它方法能算出一个箱子最多能装多少盒牛奶吗?如果要算出一车能装多少箱牛奶,也这样把整箱的牛奶搬到车上摆一摆吗?
[策略建议:数学来源于生活,生活中存在的实际问题易激发学生对知识探索的必需性与迫切性,也更能让学生体会生活中处处有数学,体会数学与生活的联系。学生摆放牛奶的方式可能不尽相同,结果可能也不相同,教师都应给予肯定,因为这一环节的设计除了创设探究新知的问题情境,并为后面推导长方体的体积计算公式作了铺垫。]
二、
引导动手实践,自主探索新知。
(1).步步设疑,层层推进。
先让学生说说还有什么其它的方法可求出一箱能装多少盒牛奶,学生如果说出可用体积计算这种方法,教师追问“你是怎么知道的?”对学生的回答给予适当的评价后,继续追问“为什么长方体的体积等于长乘宽乘高呢?”
[策略建议:在让学生用其它方法求出一箱能装多少盒牛奶时,学生可能还不同的方法,教师都应给予肯定,并可让学生反思其所提方法的可行性。如果学生都不知道长方体的体积计算公式,教师可让学生进行猜测:长方体的体积和什么有关系?]
(2).实践操作,合作交流。
1.介绍学具,并提出操作要求。
①
这些是边长1厘米的小正方体,它的体积是多少?
②
2个这样的小正方体拼成一个长方体,这个长方体的体积是多少?
③
4个这样的小正方体拼成一个长方体,这个长方体的体积是多少?
④ 12个呢?
⑤
能用这些小正方体能摆成一个长方体吗?动手摆一摆,并把所得的数据填在学习卡中。
2.小组合作,交流汇报。
①
一共用了几个小正方体?
②
摆成的这个长方体的体积是多少?
③
是怎么摆的?
④
摆成的这个长方体的长是多少?宽是多少?高是多少?
⑤
还有不同的摆法吗?
⑥
从摆的过程和结果中,你发现了什么?
3.归纳概括,推导公式。
①
用12个小正方体可以摆成几种不同的长方体?
②
这些长方体的形状不一样,可它们的体积怎样?为什么?
③
长方体的体积就等于什么?(所含的体积单位的数量)
④
长方体所含的体积单位的数量怎么计算?(每排的个数×每层的排数×层数)
⑤
每排的个数就是长方体的(长),每层的排数就是长方体的(宽),一共摆几层就是长方体的(高)。
⑥
长方体所含的体积单位的数量等于(长×宽×高),长方体的体积就等于(长×宽×高)。
⑦
如果用V表示体积,用a表示长,用b表示宽,用h 表示高,长方体的体积可以写成(V=abh)。
[策略建议:在让学生交流汇报各组操作的结果时,教师应为学生提供足够的空间与时间,让学生畅所欲言,尽情地展现自我,把各种不同的摆法呈现出来,再从中发现规律,归纳概括。在引导学生推导公式时,应尽量让学生自己归纳,概括,推导,教师只是引导,点拨,不能一手包办。长方体的体积公式的推导比较抽象,教师应尽可能地运用多媒体技术,结合课件的展示,让学生更直观形象地理解长方体的体积公式。]
三、
应用数学知识,解决生活问题。
1.根据教师所提供的长、宽、高的数据,运用长方体的体积计算公式求出一盒牛奶的体积。
2.用体积计算的方法求出一箱能装多少瓶牛奶。(测量结果取整厘米数)
3.据调查显示,泉州地区每天大约要消费3万盒伊利牛奶,一辆长2.5米,宽1.6米,高1.8米的卡车一次能运完吗?
[策略建议:在第2个练习中,学生的计算结果会出现误差,可让学生质疑,为什么为出现这样的情况?引出容积与体积的差别,但不出现容积这一概念,为后面容积的教学设下伏笔。在第3个练习中,学生解决问题的策略可能不尽相同,教师应鼓励学生用不同的方法解决问题,体现解决策略的多样性。]
加载中,请稍候......