冀教版数学八下知识点总结

标签:
教育 |
第十八章 数据的收集与整理
知识点一:调查方式
1.普查:为了某一特定目的,而对全体对象进行调查叫普查.
2.抽样调查:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.
知识点二、总体、个体、样本、样本容量
(1)总体:把所要考察对象的全体叫总体.
(2)个体:每一个考察对象叫做个体.
(3)样本:从总体中所抽取的一部分个体叫做总体的一个样本.
(4)样本容量:样本中个体的数目叫做样本容量.
知识点三:频数分布直方图
(1)把每个对象出现的次数叫做频数
(2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.
(3)频数分布表、频数分布直方图都能直观、清楚地反映数据在各个小范围内的分布情况
(4)频数分布直方图的绘制步骤是:
计算最大值与最小值的差(即:极差);
决定组距与组数,一般将组数分为5~12组;
确定分点,常使分点比数据多一位小数,且把第一组的起点稍微减小一点;
列频数分布表;
用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.
知识点四:常见的统计图
(1)条形统计图:条形统计图就是用长方形的高来表示数据的图形;
(2)折线统计图:用几条线段连成的折线来表示数据的图形;
(3)扇形统计图:用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比大小,这样的统计图叫扇形统计图;
(4)频数分布直方图、频数折线图:能显示各组频数分布的情况,显示各组之间频数的差别
第十九章
知识点一:平面直角坐标系[来源:学科网]
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。[来]
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
知识点二:点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当a≠b时,(a,b)和(b,a)是两个不同点的坐标。
知识点六:和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
第二十章
知识点一、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
知识点二:函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
知识点三:函数的三种表示法及其优缺点
(1)解析法
(2)列表法
(3)图像法:用图像表示函数关系的方法叫做图像法。
知识点四:由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
第二十一章
知识点一:一次函数
形如y=kx+b (k≠0, k, b为常数)的函数。
注意:(1)要使y=kx+b是一次函数,必须k≠0。如果k=0,则kx=0,y=kx+b就不是一次函数;
知识点二:图象
一次函数的图象是一条直线。【重点】
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-b/k,0)
(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
(2)增减性
k>0时,y随x增大而增大
k<0时,y随x增大而减小
知识点四:求一次函数解析式的方法
【重点】
(1)由已知函数推导或推证
(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。
(3)用待定系数法求函数解析式。(最常用)
“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:
利用一次函数的定义
利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向 。
利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。
利用题目已知条件直接构造方程 。



