加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

如何将在cpu运行的程序改成在cpu/gpu上运行的程序

(2018-04-18 14:20:48)
标签:

cuda

分类: 并行编程:GPU/MPI/OPEN***
1.gpu上创建内存
2.思考创建多少thread、block、grid及它们的维数(size_t  ,dim(x,y,z))
3.修改在gpu上运行的程序__global__  void fun() (因线程减少了for循环)
4.执行在gpu上运行的程序 fun<<>>()
5.host与device的同步
6.释放gpu上的内存
例子://原在CPU上运行的向量相乘的程序
#include <   stdio.h   >
void initWith(float num, float *a, int N)
{
  for(int i = 0; i < N; ++i)
  {
    a[i] = num;
  }
}
void addVectorsInto(float *result, float *a, float *b, int N)
{
  for(int i = 0; i < N; ++i)
  {
    result[i] = a[i] + b[i];
  }
}

void checkElementsAre(float target, float *array, int N)
{
  for(int i = 0; i < N; i++)
  {
    if(array[i] != target)
    {
      printf("FAIL: array[%d] - %0.0f does not equal %0.0f\n", i, array[i], target);
      exit(1);
    }
  }
  printf("SUCCESS! All values added correctly.\n");
}

int main()
{
  const int N = 2<<20;
  size_t size = N * sizeof(float);

  float *a;
  float *b;
  float *c;

  a = (float *)malloc(size);
  b = (float *)malloc(size);
  c = (float *)malloc(size);

  initWith(3, a, N);
  initWith(4, b, N);
  initWith(0, c, N);

  addVectorsInto(c, a, b, N);

  checkElementsAre(7, c, N);

  free(a);
  free(b);
  free(c);
}
-----------------------------------------------------------------------------------
//在GPU上运行的向量相乘的程序
#include <   stdio.h   >
#include <    assert.h   >

inline cudaError_t checkCuda(cudaError_t result)
{
  if (result != cudaSuccess) {
    fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
    assert(result == cudaSuccess);
  }
  return result;
}

void initWith(float num, float *a, int N)
{
  for(int i = 0; i < N; ++i)
  {
    a[i] = num;
  }
}

__global__
void addVectorsInto(float *result, float *a, float *b, int N)
{
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;

  for(int i = index; i < N; i += stride)
  {
    result[i] = a[i] + b[i];
  }
}

void checkElementsAre(float target, float *array, int N)
{
  for(int i = 0; i < N; i++)
  {
    if(array[i] != target)
    {
      printf("FAIL: array[%d] - %0.0f does not equal %0.0f\n", i, array[i], target);
      exit(1);
    }
  }
}

int main()
{
  const int N = 2<<20;
  size_t size = N * sizeof(float);

  float *a;
  float *b;
  float *c;

  checkCuda( cudaMallocManaged(&a, size) );
  checkCuda( cudaMallocManaged(&b, size) );
  checkCuda( cudaMallocManaged(&c, size) );

  initWith(3, a, N);
  initWith(4, b, N);
  initWith(0, c, N);

  size_t threadsPerBlock;
  size_t numberOfBlocks;

  threadsPerBlock = 256;
  numberOfBlocks = (N + threadsPerBlock - 1) / threadsPerBlock;

  addVectorsInto<<>>(c, a, b, N);

  checkCuda( cudaGetLastError() );
  checkCuda( cudaDeviceSynchronize() );

  checkElementsAre(7, c, N);

  checkCuda( cudaFree(a) );
  checkCuda( cudaFree(b) );
  checkCuda( cudaFree(c) );
}

**************************************************************************************
//在GPU上运行的矩阵相乘的程序
#include <   stdio.h  >
#define N  64

__global__ void matrixMulGPU( int * a, int * b, int * c )
{
  int val = 0;

  int row = blockIdx.x * blockDim.x + threadIdx.x;
  int col = blockIdx.y * blockDim.y + threadIdx.y;

  if (row < N && col < N)
  {
    for ( int k = 0; k < N; ++k )
      val += a[row * N + k] * b[k * N + col];
    c[row * N + col] = val;
  }
}

void matrixMulCPU( int * a, int * b, int * c )
{
  int val = 0;
  for( int row = 0; row < N; ++row )
    for( int col = 0; col < N; ++col )
    {
      val = 0;
      for ( int k = 0; k < N; ++k )
        val += a[row * N + k] * b[k * N + col];
      c[row * N + col] = val;
    }
}

int main()
{
  int *a, *b, *c_cpu, *c_gpu;

  int size = N * N * sizeof (int); // Number of bytes of an N x N matrix

  // Allocate memory
  cudaMallocManaged (&a, size);
  cudaMallocManaged (&b, size);
  cudaMallocManaged (&c_cpu, size);
  cudaMallocManaged (&c_gpu, size);

  // Initialize memory
  for( int row = 0; row < N; ++row )
    for( int col = 0; col < N; ++col )
    {
      a[row*N + col] = row;
      b[row*N + col] = col+2;
      c_cpu[row*N + col] = 0;
      c_gpu[row*N + col] = 0;
    }

  dim3 threads_per_block (16, 16, 1); // A 16 x 16 block threads
  dim3 number_of_blocks ((N / threads_per_block.x) + 1, (N / threads_per_block.y) + 1, 1);

  matrixMulGPU <<< number_of_blocks, threads_per_block >>> ( a, b, c_gpu );

  cudaDeviceSynchronize(); // Wait for the GPU to finish before proceeding

  // Call the CPU version to check our work
  matrixMulCPU( a, b, c_cpu );

  // Compare the two answers to make sure they are equal
  bool error = false;
  for( int row = 0; row < N && !error; ++row )
    for( int col = 0; col < N && !error; ++col )
      if (c_cpu[row * N + col] != c_gpu[row * N + col])
      {
        printf("FOUND ERROR at c[%d][%d]\n", row, col);
        error = true;
        break;
      }
  if (!error)
    printf("Success!\n");

  // Free all our allocated memory
  cudaFree(a); cudaFree(b);
  cudaFree( c_cpu ); cudaFree( c_gpu );
}

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有