六年级数学下册第四单元比和比例教案
(2018-05-06 08:59:53)分类: 教案 |
4 比例
1.比例的意义和基本性质
第1课时 比例的意义
【教学内容】比例的意义(教材第40页的内容)。
【教学目标】
1.理解比例的意义,会根据比例的意义组成比例。
2.培养学生的分析概括能力,经历引导学生参与知识的形成过程,发现过程和运用过程,体验从实践中学习的方法,感受数学知识与日常生活的密切联系。
3.感受生活中处处有数学,激发学习的兴趣,体会事物间的相对联系,培养探究精神。
【重点难点】
1.认识比例,理解比例的意义。
2.在已有知识的基础上,结合实例引出新的知识。
【教学准备】情境图、投影仪、多媒体课件。
【复习导入】
1.教师:请同学们回忆一下上学期我们学过的比的知识,谁能说一说什么叫做比?举例说明什么叫做比的前项、后项、比值。
教师把学生举的例子板书出来,并注明各部分的名称。
2.求下面各比的比值。
学生独立求出各比的比值。
(1)教师:在求比值的时候你们发现了什么吗?
学生:有两个比的比值相等。
教师:哪两个比的比值相等呢?
学生回答后,教师把这两个比画上横线。
师:是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连接起来,写成一种新的式子,如:4.52.7=106。课件显示:“106”和“4.52.7”同时闪烁,接着两个比下面的比值隐去,再用等号连接起来。
(2)前面的两个比能用等号连接起来吗?为什么?
教师将课件后面的两个比隐去。
学生:不能,比值不相等。
教师小结:数学中规定,像这样的一些式子就叫做比例。
教师板书:比例。
【新课讲授】
1.师:今天这节课我们就来一起研究比例,你想研究哪些内容呢?
生:比的意义,学比例有什么用?比例有什么特点?
师:那好,我们就来研究比例的意义吧,到底什么是比例呢?根据下面的问题自学例1。
找出每面红旗长与宽的比。
求出每个比的比值。
哪几个比的比值相等?
2.学生自学完以后,教师逐个问题指名学生回答,并板书在黑板上:2.41.6=3:2,6040=3:2。两面国旗的长和宽的比值相等。板书:2.41.6=6040,
师:像这样的式子就叫做比例。观察这些式子,你能说出什么叫做比例吗? 根据学生的回答,教师抓住关键点板书:两个比比值相等
师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。 教师用课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
3.找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?
过程要求:
学生猜想另外两面国旗长、宽的比值。
求出国旗长、宽的比值,并组成比例。
【课堂作业】
1.完成教材第40页“做一做”第1题。
学生独立完成,再在小组中相互交流、订正。
2.完成教材第40页“做一做”第2题。
组织学生议一议,加深对比例意义的理解。
【课堂小结】
通过这节课的学习,你知道“比”和“比例”这两个概念的联系与区别吗?学生各抒己见,之后师生共同归纳。
【课后作业】
1.教材第43页练习八第1、2题。
2.完成练习册中本课时的练习。
教学后记:
第2课时 比例的基本性质
【教学内容】比例的基本性质(教材第41页内容)。
【教学目标】
1.使学生理解比例的基本性质。
2.提高学生观察、计算、发现、验证和总结的能力。
3.在总结比例的基本性质的过程中,使学生感受到探索数学问题的乐趣。
【重点难点】应用比例的基本性质判断两个比能否组成比例,并正确地组成比例。
【教学准备】投影仪。
【复习导入】
1.教师提问:什么叫做比例?
2.应用比例的意义,判断哪两个比可以组成比例。
63和85 0.22.5和450
教师:同学们能正确判断两个比能不能组成比例了,那么比例各部分的名称是什么?
【新课讲授】
1.教学比例各部分的名称。
引导学生自学教材第41页第1行、第2行的内容。
教师板书:2.41.6=6040
指名让学生指出板书的比例的外项、内项。随着学生的回答教师接着板书。
学生认一认,说一说比例中的外项和内项。
2.探究比例的基本性质。
教师:我们知道了比例的各部分的名称,那么比例有什么性质呢?现在我们就来探究一下。
教师板书:比例的基本性质。
组织学生观察组成比例的两个内项和两个外项,并探究它们的关系。
学生小组内交流。指名汇报,学生可能会说:两个外项的积是2.4×40=96,两个内项的积是1.6×60=96,两个内项的积等于两个外项的积。
验证其他的比例有没有这个规律,举例说明,检验发现。0.120.5=1.25,两个外项的积是0.12×5=0.6,两个内项的积是0.5×1.2=0.6。外项的积等于内项的积。如果把比例改成分数形式呢?等号两边的分子和分母分别交叉相乘,所得的积相等。
教师:这个规律叫做比例的基本性质。引导学生说一说,比例的基本性质是什么?组织学生小组交流、汇报。教师补充:在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。学生齐读两遍。
3.应用比例的基本性质,判断哪两个比可以组成比例。
63和85 0.22.5和450
组织学生在小组中互相交流,然后指名汇报。
4.教师:到现在为止,我们学习了判断两个比能否组成比例有几种方法? 学生讨论交流后,指名回答。
教师小结:两种方法:看两个比的比值是否相等;两个比的两个外项之积是否等于两个比的内项之积。
【课堂作业】教材第41页“做一做”。组织学生独立思考,指名说一说,全班集体订正。
【课堂小结】通过这节课的学习,你有哪些收获?
【课后作业】
1.教材第43页练习八第5题。
2.完成练习册中本课时的练习。
教学后记:
第3课时 解比例
【教学内容】解比例。(教材第42页例2、例3及练习八的习题)。
【教学目标】
1.使学生学会解比例的方法,进一步理解并掌握比例的基本性质。
2.培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。
3.感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
【重点难点】
1.使学生掌握解比例的方法,学会解比例。
2.引导学生根据比例的基本性质,将带未知数的比例改写成方程。
【教学准备】多媒体课件。
【情景导入】
上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
学生在小组中议一议,再汇报。
师:这节课,我们还要继续学习有关比例的知识,就是解比例。
板书课题:解比例。
【新课讲授】
1.教师用多媒体课件出示教材第42页第1、2行的内容。引导学生思考:什么叫做解比例?
学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。 师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。
2.教学例2。
教师用多媒体课件出示例2。指名读题,根据题意,描述两个相等的比。
模型的高度=110或模型高度:实际高度=110。 实际的高度
让学生列出比例,指出这个比例的外项、内项,并说明知道哪三项,求哪一项?
教师板书:x320=110,你能试着计算出来吗?绿 色 圃 中 小 学 教 育 网
http://www.Lspjy.com
请一名学生板演,其余的学生在练习本上做。
做完后,师问:怎样把比例式转化为方程式?学生回答:根据比例的基本性质转化。师接着板书:10x=320×1。
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以把方程解出来。注意:解方程要写“解”,那么解比例也要写“解”。
师:怎样解这个方程?
生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。
小结:从刚才的解比例过程中可以看出,解比例可以根据比例的基本性质把比例转化为方程,然后用解方程的方法来求未知项x。
3.教学例3。 解比例:2.46? 1.5x
过程要求:学生独立练习,求出未知项。
同学之间互相交流,发现问题,及时解决。请一位学生上台板演。
解: 2.4x=1.5×6
1.5x= 2.4×6
x=3.75
提问:还可以用其他的知识解比例吗? 8学生交流后,可能会说出:根据比例的意义,等号右边的比值是9,要使等号左边的比值也是9,x应等于3.75。
4.总结解比例的方法。
教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?
学生回忆解比例的过程。
教师:从上面的过程可以看出,在解比例的过程中哪一步是新知识?
学生:根据比例的基本性质把比例转化成方程。
【课堂作业】
1.完成教材第42页“做一做”第1题。
学生独立练习,教师指名板演,集体订正。
2.完成教材第43~44页第6、7、8、9、10、11、12、13题。
【课堂小结】
通过这节课的学习,你在哪些方面得到了提高?
【课后作业】
完成练习册中本课时的练习。
教学后记:
2.正比例和反比例
第1课时 正比例
【教学内容】正比例。
【教学目标】使学生理解正比例的意义,会正确判断成正比例的量。
【重点难点】
重点:理解正比例的意义。
难点:正确判断两个量是否成正比例的关系。
【教学准备】投影仪。
【复习导入】
1.复习引入。
用投影仪逐一出示下面的题目,让学生回答。
已知路程和时间,怎样求速度? 板书:路程=速度。时间
已知总价和数量,怎样求单价? 板书:总价=单价。数量
已知工作总量和工作时间,怎样求工作效率? 板书:工作总量=工作效率。 工作时间
2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。
【新课讲授】
1. 教学例1。
教师用投影仪出示例1的图和表格。学生观察上表并讨论问题。
(1)铅笔的总价和数量有关系吗?
(2)铅笔的总价是怎样随着数量的变化而变化的?
(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。
根据观察,学生可能会说出:
铅笔的总价随着数量变化,它们是两种相关联的量。
数量增加,总价也增加;数量降低,总价也减少。
铅笔的总价和数量的比值总是一定的,即单价一定。
教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。
2.教师出示:一列火车行驶的时间和路程如下表。
引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?
组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是路程=速度(一定)。 时间
教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。
3.归纳概括正比例关系。
组织学生分小组讨论,上面两个例子有什么共同规律?
教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。
学生说一说是怎么理解正比例关系的。
要求学生把握三个要素:
第一:两种相关联的量。
第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。 第三:两个量的比值一定。
4.用字母表示正比例的关系。
教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:y?k (一定) x
5.教师:想一想,生活中还有哪些成正比例的量?
学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;
【课堂作业】
完成教材第46页的“做一做”(1)~(3)。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
教学后记:
第2课时 正比例图象
【教学内容】正比例图象。
【教学目标】
1.使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。
2.通过练习,巩固对正比例意义的认识。
3.初步渗透函数思想。
【重点难点】能根据数量关系式或图象判断两种量是否成正比例。
【教学准备】投影仪。
【新课讲授】
教学第46页内容。
教师出示表格(见书),依据表中的数据描点。(见书)
师:从图中你发现了什么?
生:这些点都在同一条直线上。
看图回答问题:
如果铅笔的数量是7支,那么铅笔的总价是多少?总价是4.0的铅笔,数量是多少?铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?
你还能提出什么问题?有什么体会?
组织学生分小组汇报,学生汇报时可能会说出:
正比例关系的图象是一条经过原点的直线。
利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。
【练习讲授】
1.基本练习。
(1)投影出示教材第49页第1题。
教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。
教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而
增加;b.电费与用电量的比值总是相等的。
师生共同订正。
(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km??
出示下表,填表。
一列火车行驶的时间和路程
填表并思考发现了什么?
教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)
教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。 用式子表示它们的关系:路程 =速度(一定)。 时间
教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。
2.指导练习。
(1)完成教材第49页第2题。
(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第
(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。
(3)解决教材49页第4题:投影出示书中的表格,引导学生观察表中的数据。
组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。
提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。
【课堂作业】
1.根据x和y成正比例关系,填写表中的空格。
2.看图回答问题。
(1)在这一过程中,哪个量没变?
(2)路程和时间有什么关系?
(3)不计算,从图中看出4小时行驶多少千米?
(4)7小时行驶多少千米?
【课堂小结】
教师:判断两个相关联的量成正比例的三个要素是什么?
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
教学后记:
第3课时 反比例
【教学内容】反比例。(教材第47页例2)。
【教学目标】
1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
【重点难点】
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
【教学准备】投影仪。
【复习导入】
1.让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
【新课讲授】
1.教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=??=300
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2.归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3.用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?
学生探讨后得出结果。
x×y=k(一定)
4.师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5.组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。 不同点:正比例关系中比值一定,反比例关系中乘积一定。
6.你还有什么疑问
?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
【课堂作业】
1.教材第48页的“做一做”。
2.教材第51页第9、10题。
【课堂小结】
说一说成反比例关系的量的变化特征。
【课后作业】
1.完成练习册中本课时的练习。
2.教材51~52页第8、14题。
教学后记:
3.比例的应用
第1课时 比例尺(1)
【教学内容】比例尺(1)(教材第53页内容)。
【教学目标】
1.从学生的生活实际出发认识比例尺,理解比例尺的含义,使学生会求一幅图的比例尺。
2.让学生经历比例尺的探究过程,体验从实践中学习的方法,感受数学知识与日常生活的密切联系,培养学生的探究意识和创新意识。
【重点难点】理解比例尺的含义。
【教学准备】投影仪,比例尺不同的地图,机器零件纸,北京的平面图。
【情景导入】
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们的教室有多大,它的长和宽大约多少米?如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是人们就想出了一个聪明的办法:在绘制地图和其它平面图的时候,把实际距离按一定的比例缩小,再画在纸上,有时也把一些尺寸小的物体(如机器零件)的实际距离扩大一定的倍数,再画在纸上。不管哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天,我们就来学习这方面的知识。
【新课讲授】
1.比例尺的意义。
(1)教师讲解:因为在绘制地图和其它平面图时,经常要用到图上距离与实际距离的比,我们就把它起个名字,叫做比例尺。(板书:图上距离:实际距离=比例尺)有时图上距离与实际距离的比也可以写成分数形式。
图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项或后项是1的最简整数比。
(2)教师出示地图,引导学生观察1100000000。
(3)组织学生议一议:比例尺中的“1”表示什么?“100000000”表示什么?指名说一说:“1”表示图上距离,“100000000”表示实际距离,也就是说图上1cm的距离表示实际距离100000000cm。
教师说明:1100000000是数值比例尺,有时写成
(4)引导学生观察比例尺1。 100000000。适时讲解:这是线段比例尺,表示线段的长度1cm是图上距离,50km是实际距离,也就是说图上距离1cm代表着实际距离是50km。
(5)教师用投影出示图纸。引导学生观察图中的比例尺21表示什么? 指名汇报:21表示图上距离是实际距离的2倍。
教师小结:在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在纸上。这时比例尺的前项比后项大。为了计算方便,通常把比例尺写成前项或后项是1的比。更多免费资源下载绿色圃中小学教育网httP://WwW.Lspjy.Com 课件|视频|试卷
2.教学例1。
(1)教师出示教材第53页例1。
组织学生独立思考,再在小组中议一议:什么是比例尺?
教师指名汇报,板书:
图上距离:实际距离
=2.4cm120km
=2.4cm12000000cm
=15000000
(2)巩固应用。教师出示教材第53页“做一做”。组织学生独立完成,在小组中检查。
【课堂作业】
教材第56页练习十第1题。
【课堂小结】
通过这节课的学习,你有什么收获?有什么感受?
【课后作业】
完成练习册中本课时的练习。
教学后记:
第2课时 比例尺(2)
【教学内容】比例尺(2)(教材第54页内容)。
【教学目标】根据比例尺求图上距离或实际距离。
【重点难点】
1.根据比例尺求图上距离和实际距离。
2.设未知数时应统一长度单位。
【教学准备】多媒体课件。
【情景导入】
前面我们学习了比例尺的求法,有同学能简单说一说吗?
指名学生回答问题,教师板书:
图上距离实际距离=比例尺
【新课讲授】
教学例2。
出示教材第54页例2。
指名读题,并说出题目已知什么,要求什么?
学生:已知比例尺和地铁1号线的图上距离,求它的实际距离大约是多少。教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。
学生思考并解答一下问题:
(1)这道题的图上距离是多少?(板书:7.8cm)
(2)实际距离不知道怎么办?(用x表示,在7.8的下面板书x,并在它们中间画上分数线)
(3)因为图上距离和实际距离的单位要统一,所设的x应用什么单位?(应用厘米)
(4)比例尺是多少?写成什么形式?(分数形式)教师板书解答过程。解:设苹果园站到四惠东站的实际距离为x厘米。
7.81 ?x400000
指定一名学生板演x的值,其他学生在练习本上做。教师强调单位互化的时候,注意0的个数不能写掉了。
师问:这道题还有其他的方法吗?学生思考后回答。(可以用算术方法:7.8÷1) 400000
(5)巩固应用:做教材第54页“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了米。学有余力的学生要求他们用两种方法。
【课堂作业】
教材第57页第5题。
组织学生独立完成,指名回答。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
教学后记:
第3课时 比例尺(3)
【教学内容】比例尺(3)(教材第56~58页第3~10题)。
【教学目标】
1.通过练习,巩固对比例尺的认识。
2.培养学生联系实际解决问题的能力。
3.使学生感受到数学在生活中的广泛应用。
【重点难点】把比例尺应用到实际生活中,解决实际问题。
【教学准备】投影仪。
【复习导入】
1.什么是比例尺?比例尺11000表示什么?
2.说说实际距离、图上距离和比例尺之间的关系。
【新课讲授】
1.教授例3。
(1)教师用投影出示教材55页的例3。
(2)组织学生讨论:画出三家和学校的平面图要做好哪些准备工作?使学生明确:根据“图上距离=实际距离×比例尺”,求出长和宽的图上距离。
(3)学生分组求出各图上距离,教师订正。(4)组织学生画出平面图,并在全班交流。
2.巩固应用:完成教材第55页“做一做”。组织学生独立完成,同桌间相互检查。
【练习讲授】
1.出示习题:小明家要搬新家了,他特别高兴。可是,他很担心新家离学校太远。小明的爸爸按比例为他画了一幅图,并且告诉他旧家与学校之间的距离是
900m。小明量得新家到学校的图上距离是7cm,旧家到学校的距离是3cm。同学们,你们能帮助小明算算新家与学校之间的距离吗?
(1)学生根据手中的图纸,分小组研究用什么知识来解答,然后合作计算出结果。
(2)学生汇报所在小组是怎样想的及利用了什么知识。教师要求学生每说出一步算式要说出理由,并说一说为什么要这样求。
方法一:运用比例尺。
900m=90000cm 390000=130000
7×30000=210000(cm)=2100(m)
方法二:运用倍比关系。
7÷3=77 900×=2100(m) 33
2.教师:通过同学们的计算,我们知道了小明的新家距学校比旧家远了不少,但小明还是非常高兴的,因为小明的新家比旧家宽敞。小明的新家按1200画出的户型图是这样的。
教师:你能根据手中的图选其中的一间求出实际面积吗?
(1)学生以小组为单位分工计算出结果。
(2)汇报求出卧室和卫生间的实际面积的方法。
(3)引导学生通过这道题发现在比例尺的应用中应该注意哪些问题。
3.教材第56页练习十第4题。
教师:这是一幅七星瓢虫的放大图,那么它的比例尺的后项应该是多少? 组织学生独立完成,指名汇报。
4.教材第57页练习十第8题。
先组织学生独立练习,并在小组中交流。
5.教材第57页练习十第7题。
(1)教师用投影出示第7题。
(2)指名读题,理解题意。
(3)小组合作讨论,指一名学生板演,然后集体订正。
6.教材第57页练习十第6题。
(1)组织学生分小组活动:在自己准备的地图上,选取两个城市。
(2)组织学生量出两个城市在图上的距离。
(3)根据比例尺,算出两个城市的实际距离。
(4)小组交流,汇报。
7.教材第57页练习十第9题。
(1)组织学生读题,理解题意。
(2)组织学生在小组中合作完成。
根据比例尺,算出篮球场长和宽的实际距离。
画出平面图。
相互展示。
8.教材第58页练习十第10题。
(1)学生拿出自己测量房屋地面的长和宽的实际距离。
(2)组织学生在小组中议一议,使学生明确,先要确定比例尺,再计算出长和宽的图上距离,然后再画。(比例尺要根据平面的大小来定)
9.教材第58页练习十第11题。
(1)组织学生读题,理解题意。
(2)组织学生在小组中议一议,确定解题步骤。
(3)小组合作完成,并相互交流,这里用图上距离1cm表示实际距离200m
比较合适。
(4)用投影展示学生的作业。
【课堂小结】
通过这节课的学习,你又有哪些新的认识?比例尺能帮助我们解决生活中的哪些问题?
组织学生说一说,相互交流。
【课后作业】
完成练习册中本课时的练习。
教学后记:
第4课时 图形的放大与缩小
【教学内容】图形的放大与缩小(教材第60页例4及60页“做一做”)。
【教学目标】
1.使学生从数学的角度认识放大与缩小现象,体会图形相似变化的特点,能按要求将图形放大或缩小。
2.培养学生把已学知识应用到实际生活中的能力,以及动手的能力。
【重点难点】
1.理解图形的放大和缩小,能利用方格纸把一个简单图形按指定的比例放大或缩小。
2.使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小是图形边长的变化,图形的形状不发生改变。
【教学准备】投影仪、投影片、方格纸。
【情景导入】
1.创设情境,引起冲突。
出示一张班级学生照片。
师:李林同学打算把自己的照片放大后挂在房间里,摄影师分别用了三种处理方法。
电脑演示:方法一,宽边不变,把长边拉长。
方法二,长边不变,把宽边拉长。
方法三,把长边、宽边同步拉长。
2.合理选择,初步感知。
请你帮助李林选择一下,哪种处理方法效果最佳?并说出理由。
【新课讲授】
1.(1)(隐去方法一、方法二图,留下方法三图和原图)师:仔细观察两幅图,总感觉两者之间似乎存在着一种关系,那我们可以着手从哪方面研究两者关系呢?
(师拿出一张长方形纸)我们先来分析一下长方形有哪些元素?最基本的因素是什么?
引领学生答出长方形的基本因素有长、宽、周长、面积,其中最基本的因素是长和宽。
师:那我们就从最基本的因素长和宽开始研究吧。
电脑出示:原照片长8cm,宽5cm。
放大后,照片长16cm,宽10cm。
放大后的长和原来的长有什么关系?宽呢?
(2)根据学生回答,教师引导出示:放大后长方形的长是原来长方形长的2倍,放大后的宽也是原来长方形宽的2倍,概括起来说就是:长方形的每条边都放大到原来的2倍。放大后的长方形与原来长方形对应边长的比是21。就是把原来的长方形按21放大。(划线部分为所出示的三句结论)
(3)借助两幅图理解“每条边”,“对应边长”和“21”的含义,重点明白这里比的前项和后项分别代表什么?
出示: 2 1
前项 后项
放大后边长 原图边长
(4)如果把原图按31放大,放大后长方形的长、宽各是多少?
学生回答,师同步板书:
原图 21 31
长(cm):8 8×2=16 8×3=24
宽(cm):5 5×2=10 5×3=15
继续追问,如果把原图按51,101放大,放大后的长、宽各是多少?指名口答。
如果把原图按12缩小,缩小后的长、宽是原长、宽的几分之几?各是多少厘米?
先理解12的含义:放大后的边长为1份,原图边长为2份。
如果按14缩小呢?
小结提问:图形在放大与缩小时什么发生了变化?
过渡:从李林同学的照片中我们学习了图形的放大与缩小,下面我们动手来
画,或许还会有新的发现。
2.独立完成教材第60页例4的绘图。
(1)默读例4并思考:书中画出几个图形?所画图形的格数与原图有什么关系?
(2)请同学们按要求画在自己的方格图中,比一比谁画的既正确又美观。
(3)投影反馈,请同学相互评价,重点说出所画图形格数是怎样得来的。
(4)观察上面的3个图形,你有什么发现。
3.例4的延伸。如果把放大后的这组图形的各边再按13缩小,图形又会发生什么变化?学生讨论后得出:
(1)图形缩小了,但形状不变。
1(2)缩小后的图形各条边分别缩小到原来长度的。 3
引导学生小结:图形在放大、缩小时原图边长要同步变化,它们只是大小发生了变化,形状没变。
4.试一试:在自己的方格纸上按4:1画出三角形放大后的图形(教材第60页“做一做”)。
学生尝试操作。
组织学生讨论、交流画三角形的技巧:你在画三角形时有什么比较好的方法。(提示先画直角边,再画斜边)
猜一猜斜边的变化与直角边相同吗?自己测量验证。
小结:图形在放大时所有边的变化是相同的。
【课堂作业】
1.填空。
一个长方形长3dm,宽2dm,按31放大,放大后的长是()dm,宽是( )dm,放大后的长方形与原长方形的周长比是( ),面积比是( )。
2.完成教材第63页练习十一第1、2题。
【课堂小结】
图形的放大与缩小在日常生活中应用非常广泛,在深圳的世界之窗,就有许多建筑是将世界各地的名胜按一定的比例缩小后进行建造的,还有冲洗照片,汽车模型制造,复印文件,绘制地图,观察太空的天文望远镜??正是这些技术的应用,才使得我们的世界变得缤纷多彩,可见数学与生活的联系是多么的紧密。
【课后作业】
完成练习册中本课时的练习。
教学后记:
第5课时 用比例解决问题(1)
【教学内容】用比例解决问题(1)(教材第61页的例5)。
【教学目标】
使学生能正确判断应用题中涉及的量成什么比例关系,能利用正比例的意义正确解读实际问题。
【重点难点】
1.认识正比例实际问题的特点。
2.掌握用比例知识解答实际问题的解题思路。
【教学准备】投影仪。
【复习导入】
1.(1)判断下面的量各成什么比例。
工作效率一定,工作总量和工作时间。
路程一定,行驶的速度和时间。先让学生说出数量关系式,再判断。
(2)先根据条件说出下面各题的数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
一台机床5小时加工40个零件,照这样计算,8小时加工64个。
一列火车行驶360km。每小时行90km,要行4小时;每小时行80km,要行x小时。
指名口答,教师板书。
2.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识也可以列一个等式。所以我们以前学过的一些实际问题,还可以应用比例的知识来解答。这节课,我们就来学习用正比例知识解决问题。(板书课题)
【新课讲授】
1.教学例5。
教师出示教材第61页的情境图,引导学生观察。
组织学生描述图画上的内容和数学信息。
问题:张大妈家上个月用了8吨水,水费是28元。李奶奶家用了10吨水,水费是多少钱?
(1)想一想:怎样计算呢?引导学生寻找条件,独立思考,列式算一算,再在小组中交流。
(2)指名说一说计算方法。学生可能会这样计算:
28÷8×10
=3.5×10
=35(元)
(3)还有其他的解答方法吗?
引导学生思考,教师可以说明:这样的问题可以应用比例的知识来解答。
(4)教师:问题中有哪两种量,它们成什么比例关系?你是根据什么判断的?根据这样的比例关系,你能列出等式吗?
组织学生先独立思考,然后小组内讨论、交流。
(5)指名汇报。说一说解答方法。汇报时学生可能会说出:
因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说两家水费和用水的吨数的比值是相等的。
(6)组织学生设未知数,根据正比例的意义列方程解答。
指名板演,集体订正。
(7)指名检验。
师说明:在列式时,同学们可能感到很陌生,列正比例的式子是什么样的,就是列出两组比,并且比值要相等和题中的意义要相符,比如,此题比值的意义是每吨水的价钱一定,那么你所列的比的比值一定要表示每吨水的价钱。应列出:
解:设李奶奶家上个月的水费是x元。
288=x10
8x=28×10
x=280÷8x=35
答:李奶奶家上个月的水费是35元。
(8)将答案代入到比例式中进行检验。
2.修改题目:王大爷上个月的水费是42元,他们家上个月用了多少吨水?让学生说一说题意。
请同学们按照例5的方法在练习本上解答,同时指一名板演,然后集体订正。指名说一说是怎样想的,列比例的根据是什么?
学生独立应用比例的知识来解答,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。
【课堂作业】
教材第62页“做一做”第1题。
(1)先组织学生读题,理解题意。
(2)指两名学生板演,集体订正。
【课堂小结】
通过这节课的学习,你有哪些收获?
【课后作业】
完成练习册中本课时的练习。
教学后记:
第6课时 用比例解决问题(2)
【教学内容】用比例解决问题(2)。
【教学目标】
1.能利用反比例的意义正确解读实际问题。
2.进一步培养学生应用已学知识进行分析、推理的能力。在解决实际问题的过程中,开拓思维。
【重点难点】掌握用反比例知识解答实际问题的解题思路。
【教学准备】多媒体课件。
【情景导入】
前面我们一起学习了用正比例解决实际问题,今天我们一起来学习用反比例解决实际问题。
【新课讲授】
1.教学例6。
一个办公室原来平均每天照明用电100千瓦时。改用节能灯以后,平均每天只用电25千瓦时。原来5天的用电量现在可以用多少天?
提问:以前我们是怎样解答的?这样解答是先求什么?是按怎样的数量关系式来求的?这道题里哪个量是不变的量?
(1)仿照例5的解题过程,用比例的知识来解答例6。指名板演,其余学生在练习本上做。练习后让学生说一说怎样想的。检查解答过程,结合提问弄清为什么要列成积相等的式子。
(2)按过去的方法是先求什么再解答的?求总数量的题现在用什么比例关系解答?用反比例关系解答这道题,应该怎样想,怎样做?
(3)指出:解答例6要按题意列出关系式,判断反比例,再找出两种相关联的量相对应的数值,然后根据反比例关系的乘积一定,也就是相对应数值的乘积相等,列式解答。
2.小结解题思路。
(1)请同学们根据例6的解题过程,想一想应用比例知识解题,是怎样想的,怎样做的?
(2)同学们相互讨论一下,然后大家交流。
(3)指一名学生说解题思路。
(4)指出:应用比例的知识解题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联的量的对应数值,(板书:找出对应数值)再根据正反比例意义列出等式解答。(板书:列出等式解答)
追问:你认为解题的关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例等式比值相等,反比例乘积相等)
【课堂作业】
教材第62页“做一做”第2题。
(1)先组织学生读题,理解题意。
(2)指两名学生板演,集体订正。
【课堂小结】
通过这节课的学习,你有哪些收获?
【课后作业】
完成练习册中本课时的练习。
教学后记:
整理和复习
【教学内容】整理和复习(教材第65页内容)。
【教学目标】
1.回顾本单元的知识内容,进一步理解和掌握有关比例的知识,培养学生归纳整理数学知识的能力。
2.经历知识的回顾整理过程,体验归纳整理,构建知识体系的学习方法。
3.体验掌握数学知识的成功喜悦,激发学习的兴趣,培养善于归纳总结、自我激励的良好习惯。
【重点难点】归纳整理有关比例的知识,形成知识体系。
【教学准备】小黑板,投影仪。
【复习回顾】
1.教师:同学们,这一单元我们学习了比例的知识,请同学们举例说一说:什么叫做比?什么叫做比例?比和比例有什么联系和区别?
组织学生看书,同桌讨论整理后回答,教师整理成表格。
2.用投影出示下面的问题:
(1)什么叫解比例?
(2)解比例的过程与要求是什么?
接着完成教材第65页第2题(强调书写与格式)。
学生独立练习。
请4位学生上讲台板演。
说一说解比例的步骤,每步运算的根据是什么?
3.用投影出示下面的问题:
(1)什么叫做成正比例的量和正比例的关系?
(2)什么叫成反比例的量和反比例关系?
(3)正比例和反比例有什么区别和联系?
根据学生的回答,教师填写小黑板上的表。
(4)如何判断两种量是否成正比例或反比例?
小组讨论:概括“一找、二想、三判断”。
一找:哪两种相关联的量;
二想:两种相关联量的变化情况,写出关系式;
三判断:联系关联式,看是比值一定还是积一定,判断成什么比例。
4.自主构建,形成网络
教师:请各小组将本单元比例的应用这节内容进行归纳整理,比一比看哪个小组整理的知识又详细又清楚。
(1)组织各小组归纳整理。
(2)组织各小组汇报归纳整理的内容。
汇报时要求各小组将自己归纳整理的内容展示出来。教师根据各小组汇报的情况,适当补充。
教师组织各小组的汇报进行评价。
【课堂作业】
1.教材第65页第3题。
先组织学生独立完成,再互相说一说是怎样判断的?
2.教材第65页第4题。
学生独立练习,教师指名板演,然后集体订正。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
1.第66页练习十二第1题~第4题。
2.完成练习册中本课时的练习。
教学后记: