加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

在matlab中如何实现梯度下降法?

(2018-04-11 09:05:01)
分类: matlab

梯度下降法函数function [k ender]=steepest(f,x,e),需要三个参数f、x和e,其中f为目标函数,x为初始点,e为终止误差。输出也为两个参数,k表示迭代的次数,ender表示找到的最低点。

 

 

代码如下:

function [k ender]=steepest(f,x,e)
%梯度下降法,f为目标函数(两变量x1和x2),x为初始点,如[3;4]
syms x1 x2 m; %m为学习率
d=-[diff(f,x1);diff(f,x2)];  %分别求x1和x2的偏导数,即下降的方向
flag=1;  %循环标志
k=0; %迭代次数
while(flag)
    d_temp=subs(d,x1,x(1));      %将起始点代入,求得当次下降x1梯度值
    d_temp=subs(d_temp,x2,x(2)); %将起始点代入,求得当次下降x2梯度值
    nor=norm(d_temp); %范数
    if(nor>=e)
        x_temp=x+m*d_temp;            %改变初始点x的值
        f_temp=subs(f,x1,x_temp(1));  %将改变后的x1和x2代入目标函数
        f_temp=subs(f_temp,x2,x_temp(2));
        h=diff(f_temp,m);  %对m求导,找出最佳学习率
        m_temp=solve(h);   %求方程,得到当次m
        x=x+m_temp*d_temp; %更新起始点x
        k=k+1;
    else
        flag=0;
    end
end
ender=double(x);  %终点
end

 

调用示例1:


syms x1 x2;
f=(x1-2)^2+2*(x2-1)^2;
x=[1;3];
e=10^(-20);
[k ender]=steepest(f,x,e)

结果k=27       ender=[2;1]

 

 

 

调用示例2:


syms x1 x2;
f=x1-x2+2*x1^2+2*x1*x2+x2^2;
x=[0;0];
e=10^(-20);
[k ender]=steepest(f,x,e)

结果:

k=50    ender=[-1.0000;1.5000]

 

 

调用示例3:


syms x1 x2;
f=3/2*x1^2+1/2*x2^2-x1*x2-2*x1;
x=[0;0];
e=10^(-2);
[k ender]=steepest(f,x,e)


结果:

k=9    ender=[0.9959;0.9877]

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有