加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

新华基础科学院:宇称不守恒是个伟大的错误!

(2021-08-02 22:45:55)
标签:

宇称

不守恒

伟大

错误

科学

2021年8月2日,新华基础科学院对外公布最新研究成果:宇称不守恒是个伟大的错误!
   从旋场、电场、磁场结合的量子场论分析,1956年吴健雄的钴60放射实验的环境、放射电子的局限性、是否考虑其他放射物、正电子放射、实验时间30秒(对于量子而言太长了)、钴60晶体的加工过程等分析,单纯从钴放射电子的左右电场方向就下宇称不守恒的结论,在当时来讲,是个伟大的突破。
  根据太极科学院的电子有三态理论,电子在原子内是以电云波动形式存在,电云离开原子,形成电子对外发射能量是个复杂的场反应过程。传统的粒子理论受到挑战。

宇称守恒都符合粒子的三个基本的对称方式:
   1、一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称。
   2、一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P)。
   3、一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称。
   而为了描述这种对称性质,物理上把微观粒子分成两类,一类宇称为正(+1),一类宇称为负(-1),也可称作奇偶,一个系统的总宇称,就等于系统内所有粒子宇称的乘积。而一个系统无论如何变化,不管是分裂出新粒子,还是结合成新粒子,系统变化前后的总宇称保持不变。
   宇称不守恒定律是指:在弱相互作用中,互为镜像的物质的运动不对称,由吴健雄用钴60验证。
科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同。
   1956年,科学家发现θ和τ两种介子的自旋、质量、寿命、电荷等完全相同,多数人认为它们是同一种粒子,但θ介子衰变时产生两个π介子,τ子衰变时产生3个,这又说明它们是不同种粒子。
   1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言:τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!用科学语言来说,"θ-τ"粒子在弱相互作用下是宇称不守恒的。
   在最初,"θ-τ"粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验证了"宇称不守恒",从此,"宇称不守恒"才真正被承认为一条具有普遍意义的基础科学原理。
   吴健雄用两套实验装置观测钴60的衰变,她在极低温(0.01K)下用强磁场把一套装置中的钴60原子核自旋方向转向左旋,把另一套装置中的钴60原子核自旋方向转向右旋,这两套装置中的钴60互为镜像。实验结果表明,这两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称。实验结果证实了弱相互作用中的宇称不守恒。
  弱相互作用下宇称不守恒的消息轰动了整个物理学界,这项发现的重要性达到了什么样的程度呢?1957年1月发布论文,1957年杨振宁和李政道就获得了诺贝尔奖,创造了成果发布获诺将最快纪录。
这个结论意义重大,在物理学中,时间T、宇称P和电荷C,被认为是现代物理学的基础,三者的守恒一直是物理学关注的对象,宇称不守恒让物理学家开始思考,我们理解世界的方式或许出了问题。而后来物理学家詹姆斯•克罗宁和瓦尔•菲奇,再次发现弱相互作用下宇称和电荷的联合对称不守恒(CP破坏),获得1980年的物理学诺贝尔奖。
  后来人们还发现,在弱相互作用里另外两种重要对称性即电荷正负对称性C和时间反演对称性T也不是严格守恒的。但是,在量子场论中可以严格证明,对于满足狭义相对论的平直空间中的量子场,这三种对称性的组合CPT 是严格守恒的,这被称为CPT 定理。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有