山雨欲来风满楼(五)

分类: 理论探索 |
山雨欲来风满楼(五)
宇宙微波背景辐射证据不足
这种名为宇宙微波背景辐射(CMB)的光,是宇宙的化石,是宇宙大爆炸的“余烬”,它均匀地分布在整个宇宙空间。科学家们认为,它出现在宇宙发生暴胀(也就是宇宙出生约38万年)之后,那时,中性原子开始形成,而且,对于光来说,太空变得透明。
普朗克上携带了一系列高灵敏度仪器,能够对宇宙微波背景辐射进行深入探测。2013年3月21日,欧洲航天局公布了根据普朗克太空探测器传回数据绘制的宇宙微波背景辐射图,这幅图以前所未有的精确度验证了宇宙标准模型,也支持暴胀理论。但这副图同时也展示出一些与现有宇宙理论假说的不同之处,例如被认为激发了大爆炸的“暗能量”比以前所知的要少,这意味着目前的理论需要修正。
暴胀理论的支持者认为,普朗克的结果完美地暗示了暴胀如何工作。然而,批评人士则认为,科学家们只不过是将暴胀模型稍作修改,让其与数据相吻合,而不是真正解释暴胀。
美国哈佛大学的天体物理学家安娜·利贾斯表示,普朗克提供的所有数据表明,宇宙“非常简单”。然而,其2013年提供的这批数据只能支持非常复杂的暴胀模型,“只对一些非常受限的初始环境起作用”。
细微的密度波动导致星系形成
科学家们希望,普朗克卫星即将提供的下一批数据能够证明,暴胀是否真能够解释为何我们目前的宇宙会拥有这样的形状。而且,宇宙暴胀理论的支持者们也认为,这些数据有可能证明,量子物理学里能发现现今宇宙的种子。
通过普朗克提供的数据和此前的其他观测获得的数据,科学家们已经知道,宇宙微波背景辐射的密度表现出了轻微的波动,在接下来的137亿年间,随着宇宙不断膨胀,这种密度波动变得非常大。
英国剑桥大学的理论物理学家丹尼尔·鲍曼表示,这些古老的密度波动可能源于宇宙大爆炸之后就出现的、时空内细微且自发的量子波动。他说:“我们相信,宇宙暴胀将这些细微的量子波动拉升成我们在今天的宇宙中所观察到的密度波动。”
既然这些密度波动就出现在暴胀之后,这意味着,当宇宙微波背景辐射被制造出来时,它们已经在那儿恭候了,而且,密度更大的区域会吸收更多物质并最终形成我们现在看到的星团和星系。
密度波动或隐藏着暴胀的秘密
宇宙微波背景辐射中发现的密度波动为我们理解暴胀提供了一个新的维度。当宇宙微波背景辐射开始“发光时”,量子波动已经“变身”为密度波了。
普朗克太空望远镜提供的第一套数据不仅证实了这种波动,而且也证明,在很大的距离范围内,这些密度波动都相互关联,所有拥有同样波长的波似乎会同时振荡。
鲍曼说:“使用暴胀理论,很容易对这种相干进行解释,这是我们迄今做出的最令人兴奋的观察发现,真是太不可思议了。”
科学家们对宇宙微波背景辐射所做的诸多测量中,得出的最令人诧异的一个结论却是,这种化石光的温度具有一致性,上下变化不超过0.0003摄氏度。鲍曼说,只有两种方式才能让宇宙获得这样整齐划一的温度。
在一个非暴胀的模型中,宇宙不同部分的温度一定非常不同,接着,随着时间的推移,温度会达到平衡,就像房间内的物体会“达到室温”一样。然而,宇宙太年轻了,因此,在这么广袤的宇宙空间和如此短暂的时间内无法获得这种平衡。这样一来,我们似乎陷入了悖论中:尽管它们无法相互“联系”,但宇宙中距离遥远的部分仍然拥有同样的温度和密度。
鲍曼说,暴胀提供了更好的解决方案:所有物质最初拥有同样的温度,接着它们突然被加速撕裂。因此,现在我们看到的情况是,物体之间存在着细小的温度差异,因为它们都始于同样的地方,具有同样的温度。
鲍曼认为,这就像发现距离非常远的两杯咖啡,拥有同样的温度。如果它们从来没有靠得非常近来交换热量,那么,它们根本没有理由拥有同样的温度。但如果这两杯咖啡“由同样的咖啡机同时产生,接着,暴胀将咖啡杯带走并以超光速的速度让其快速分开,那么,它们就可能拥有同样的温度”。
尽管研究宇宙微波背景辐射极其微弱的光非常需要技巧,但其也会提供巨大的科研回报。这是因为,科学家们认为,宇宙最初的量子波动应该也触发了引力波。引力波这一概念由爱因斯坦提出,指的是时空的波纹,不过,目前还只停留在理论阶段。
如果科学家们能发现引力波,并用其来标示宇宙微波背景辐射的波动,它们有望为暴胀理论提供强有力的证据。鲍曼说:“看见引力波将成为宇宙暴胀模型的确切证据。”
不过,获得这一证据非常复杂,因为它依靠宇宙微波背景辐射发出光的偏振的细微变化。存在着两类偏振变化:E模型和B模型,后者描述了这种偏振的旋转或扭曲,物理学家们也认为,正是这一变化为暴胀理论提供了坚实的证据。
利贾斯说,爱因斯坦的相对论指出,宇宙微波背景辐射将证明B模型偏振,因为宇宙暴胀期间时空的撕裂需要巨大的能量。
如果宇宙微波背景辐射发出的光确实以这种方式发生扭曲,暴胀将提供非常好的解释。利贾斯说:“因为,这样一种高能机制将以非常暴烈的方式让时空发生震颤,这样,我们就能通过测量其产生的引力波的振幅来确定其强度。”
鲍曼说,引力波或许也能说服那些目前正研究替代暴胀理论的科学家们接受这一模型。他说:“看见B模式将让我们更加确信,暴胀曾经发生,而且,我们都来自于量子波动。”
利贾斯也认同这一观点,她表示:“迄今为止,科学家们的一贯做法是设计复杂的拥有很多参数(这些参数与普朗克提供的数据相吻合)的暴胀模型。能否探测到引力波的存在意义重大,其能有效地对暴胀理论进行证实或者证伪。”
科学家家发现黑洞附近喷流源头
9月25日消息,黑洞周围有一圈浓密呈盘状的热气体正在旋转,盘中心发出白热的光,盘缘因受到黑暗背景烘托而可看得见。从右上方一直朝左下方延展,一缕缕青绿色的物体是快掉入黑洞的物质在顺著磁场引导下所形成的喷流。以虚线标记的范围是最内圈稳定圆型轨道,这是物质以轨道绕著黑洞转的最近距离,再更靠近而超过此距离的话,则物质轨道开始呈现不稳定,然后掉入黑洞中。
由包括中研院天文所的贺曾朴院士以及井上允特聘研究员所组成的国际研究团队,首次观察到了位于星系M87中心巨大黑洞附近所发出的高速喷流之源头,并将这项重要的观测结果于2012年9月27日发表于Science期刊。这项研究工作除了让人类更逼近黑洞边缘那受到黑洞重力扭曲的时空当中外,也提供了M87中心的巨大黑洞正在以高速旋转的证据。在未来的几年内,当中研院天文所与美国史密松天文台共同建造的格陵兰望远镜加入观测的行列后,人类将能够直接拍摄M87中心黑洞的事件视界,揭开黑洞的神秘面纱。
M87是距离地球约五千万光年的一个椭圆星系。在这个星系的中心有著一个比太阳质量大60亿倍的巨大黑洞。此外,M87还拥有一条从星系中心延伸至外太空,长度约5,000光年的高速喷流。这条喷流是由运动速度接近光速的游离气体所组成。理论天文物理学家认为,高速喷流的形成是由于黑洞周围的磁场把一部份快被吸进黑洞的物质以极高的速度向外拋出所造成。
虽然天文学家们已观察M87的高速喷流数十年,但由于望远镜的解析度不足,星系中心所发出的高速喷流的来源却迟迟无法观察到。在此同时,天文物理学家关于高速喷流之来源的理论也仍无法被实际观测所印证。然而,最近由美国、台湾、日本、德国与加拿大的天文学家所组成的国际研究团队在提高望远镜的解析度上有了明显的突破。透过特长基线干涉技术,天文学家们以连结位于美国加州、亚历桑那州与夏威夷三地的电波望远镜的方式,模拟出一个相当于半个地球大小的望远镜。参与这次研究的井上允博士表示:这种虚拟电波望远镜的解析度高达能将放在月球表面上的一只兔子的头看得清清楚楚,也正由于这样的高解析度使得天文学家们第一次观察到黑洞喷流的最底部。
宇宙空间充满了奇怪并且时常令人费解的事情,从完全假设的黑洞,到爆炸的星星,从一勺物质就重达十亿吨的高密度星球,到实际上并不空空如也的空间。这里我们就跟大家一起,看看在宇宙空间中,最神秘怪异的十件事。
NO.1 空无极客
在我们充满神秘与怪异的宇宙空间中,最奇怪的事情就是空无,黑黢黢一片的空无。不过也许这并不是一片空无,可能充斥这我们看不见的东西。
在我们看不见有任何物质的宇宙空无中,可能有许多所谓的虚粒子。虚粒子是指在量子力学中,一种永远不能直接检测到的,但其存在确实具有可测量效应的粒子。根据量子力学的不确定性原理,宇宙中的能量于短暂时间内在固定的总数值左右起伏,起伏越大则时间越短,从这种能量起伏产生的粒子就是虚粒子。
(未完待续)