物理世界(三十八)

分类: 理论探索 |
物理世界(三十八)
刘文旺
非平衡态热力学领域提供了对不可逆过程宏观描述的一般纲要。对非平衡态热力学或者说对不可逆过程热力学的研究,涉及广泛存在于自然界中的重要现象,是正在探讨的一个领域。如平衡态的热力学和统计力学的关系一样,从微观运动的角度研究非平衡态现象的理论是非平衡态统计力学。
热平衡定律是否勒(Fowler)于1939年提出的,因为它独立于热力学第一定律、第二定律和第三定律之外,但又不能列在这三个定律之后,故称为热力学第零定律。
内容:在不受外界影响的情况下,只要A和B同时与C处于热平衡,即使A和B没有热接触,它们仍处于热平衡状态。
物理意义:互为热平衡的物体之间必存在一个相同的特征——它们的温度是相同的。
不仅给出了温度的概念,而且指出了判别温度是否相同的方法。
热传导的方向性:热传导的过程是有方向性的,这个过程可以向一个方向自发地进行,但是向相反的方向却不能自发地进行.
只有单一的热源,它从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化.人们把这种想象中的热机称为第二类永动机.第二类永动机不可能制成,表示机械能和内能的转化过程具有方向性.
热力学第二定律有多种表述,下面给出常见的两种.
1、克劳修斯表述:不可能使热量由低温物体自发的传递到高温物体,而不引起其他变化.这是按照热传导的方向性来表述的.
2、开尔文表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化.这是按照机械能与内能转化过程的方向性来表述的,它也可以表述为:第二类永动机是不可能制成的.
用熵的概念来表述热力学第二定律就是:在封闭系统中,热现象宏观过程总是向着熵增加的方向进行,当熵到达最大值时,系统到达平衡态。第二定律的数学表述是对过程方向性的简明表述。
能量耗散是从能量转化的角度反映出自然界中的宏观过程具有的方向性.
自然界物质运动形式具有多样性,除了存在如汽车、火车的运行,车床飞轮的飞转,天体运动等一类现象之外,还有物质的热胀冷缩、热传导、扩散,导体电阻率随温度变化及物质可进行固、液、汽三种状态的变化等另外一类现象。前者的特征是物体的空间位置发生变化,被称为机械运动现象,力学研究其规律;仔细分析后一类现象,会发现存在一共同的特点,即都与温度有关。我们将这一类的物质物理性质随温度变化的现象称为热现象。
热现象的产生是物质内部大量分子无规则运动导致的.当讨论和研究热现象规律时,物体的整体宏观机械运动已不再属于讨论的范畴,人 们将目光投向物质内部大量分子运动上。区别于机械运动物理概念,人们将由大量无规则运动的分子所组成的宏观物质以热现象为主要标志的运动形态称为热运动。
热现象是热运动的宏观表现,热运动是热现象的微观本质.
热运动不是孤立,往往在一定条件下可向其它运动形态转化。如摩擦生热、挥发降温、气缸内气体吸热对外做功、电流通过电阻发热和温差电池等。因此研究热运动同其它运动形态转化的规律也是热学研究的另一个重要基本内容。
热学是研究物质热现象、热运动规律以及热运动同其它运动形式之间转化规律的一门学科。
1714年,华伦海特改良水银温度计,定出华氏温标,建立了温度测量的一个共同的标准,使热学走上了实验科学的道路。经过许多科学家两百年的努力,到1912年,能斯脱提出热力学第三定律后,人们对热的本质才有了正确的认识,并逐步建立起热学的科学理论。
历史上对热的认识,出现过两种对立的观点。18世纪出现过热质说,把热看成是一种不生不灭的流质,一个物体含有的热质多,就具有较高的温度。与此相对立的是把热看成物质的一种运动的形式的观点,俄国科学家罗蒙诺索夫指出热是分子运动的表现。
针对热质说不能解释摩擦生热的困难,许多科学家进行了各种摩擦生热的实验,特
别是朗福德的实验,他用钝钻头钻炮筒,因钻头与炮筒内壁摩擦,在几乎没产生碎屑的情况下使水沸腾;1840年以后,焦耳做了一系列的实验,证明热是同大量分子的无规则运动相联系的。
焦耳的实验以精确的数据证实了迈尔热功当量概念的正确性,使人们摈弃了热质说,并为能量守恒定律奠定了实验基础。与此同时,热学的两类实验技术——测温术和量热术也得到了发展。
热学主要研究热现象及其规律,它有两种不同描述方法——热力学和统计物理。热力学是其宏观理论,是实验规律。统计物理学是其微观描述方法,它通过物理简化模型,运用统计方法找出微观量与宏观量之间的关系。
热力学第二定律和热力学第一定律一起,组成了热力学的理论基础,使热力学拥有了完整的理论体系,成为物理学的重要组成部分.但是汤姆孙和克劳修斯等人却错误地把热力学第二定律推广到整个宇宙,得出了宇宙“热寂”的荒谬结论:“宇宙越接近于其墒为一最大值的极限状态,它继续发生变化的机会就越少,如果最后完全到达了这个状态,也就不会再出现进一步的变化,宇宙将处于死寂的永远状态.”
他们不恰当地把局部物质世界的部分变化过程的规律推广到整个宇宙的发展全过程,同时也不顾这些定律的适用范围和条件,把孤立体系的规律,推广到无限的、开放的宇宙,因而得到了荒谬的结论.事实上,许多事实证明了宇宙演变的过程并不遵守这些结论.
1877年玻耳兹曼写道:"(热力学)第二定律是关于几率的定律,所以它的结论不能靠一条动力学方程(来检验).”在讨论热力学第二定律与几率的关系中,他证明了嫡与几率W的对数成正比.后来普朗克把这个关系写成S一klnw,并且称k为玻耳兹曼常量.这一关系式犹如横跨宏观与微观的桥梁,有了这一关系,其他热力学量都可以推导出来.这样就可以明确地对热力学第二定律进行统计解释:在孤立系统中,滴的增加对应于分子运动状态的几率趋向最大值(即最可几分布).嫡减小的过程不是不可能,系统达到平衡后,滴值可以在极大值附近稍有涨落.
17世纪末阿蒙顿观测到空气的温度每下降一等量份额,气压也下降一等量份额.继续降低温度,总会到达气压为。的时候,所以温度降低必有一限度.他认为任何物体都不能冷却到这一温度以下,他还预言,达到这个温度时,所有运动都将趋于静止.这个温度就是“绝对零度”.
“绝对零度不可能达到”这样一条物理学的基本原理到1912年才被正式提出来.1906年,德国物理化学家能斯特说:“在低温下,任何物质的比热容都要趋向某一很小的确定值,这个值与凝聚态的性质无关.”后来,能斯特通过实验证明,这个“很小的确定值”就是。,与爱因斯坦的比热容量子理论一致.当时,能斯特并没有利用嫡的概念,他认为这个概念不明确.但普朗克则相反,把嫡作为热力学最基本的概念之一,所以当普朗克了解到能斯特的工作后,立即尝试用嫡来表述“热学新理论”.
他的表述是:“在接近绝对零度时,所有过程都没有嫡的变化."
1912年能斯特在他的著作《热力学与比热》中说:“不可能通过有限的循环过程使物体达到绝对零度.”这就是绝对零度不可能达到的定律,也是热力学第三定律通常采用的表述方法.后来,西蒙在1927年至1,37年对热力学第三定律作了改进和推广,修正后称为热力学第三定律的能斯特一西蒙表述:当温度趋近绝对零度时,凝聚系统(固体和液体)的任何可逆等温过程。
现代人们普遍认为,绝对零度是不可能达到的最低温度。自然界的温度只能无限逼近,不够到达到,如果达到了那么一切事物都达到运动的最低形式。在绝对零度下,原子和分子拥有量子理论允许的最小能量。绝对零度就是开尔文温度标(简称开氏温度标,记为K)定义的零点。0K大约等于摄氏温度的零下273.15℃,开氏温度标的一个单位与摄氏温标——简单地说摄氏度的大小是一样的。
(未完待续)