加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

R语言数据分析与挖掘实战第六章

(2017-07-25 09:03:41)
分类: R语言数据分析与挖掘实战
setwd("E:/code/dm_R/")
Data = read.csv("./chapter6/example/model.csv", header = TRUE)
#把数据分为训练集、测试集两部分
#数据命名
colnames(Data) <- c("time", "userid", "ele_ind", "loss_ind", "alarm_ind", "class")
#数据分割
set.seed(1234)
#定义序列ind,随机抽取1和2,1占80%,2占20%
ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.8, 0.2))
trainData <- Data[ind == 1,]#训练集,240个对象
testData<- Data[ind == 2,]#测试集,51个对象
#构建神经网络代码
#将class列转为factor类型
trainData <- transform(trainData, class = as.factor(class))
str(trainData)

'data.frame':    240 obs. of  6 variables:
 $ time     : Factor w/ 19 levels "2014年9月10日",..: 16 11 8 5 4 13 11 10 19 9 ...
 $ userid   : num  9.9e+09 9.9e+09 9.9e+09 9.9e+09 9.9e+09 ...
 $ ele_ind  : int  4 4 2 9 2 5 3 3 4 10 ...
 $ loss_ind : num  1 0 1 0 0 0 1 0 1 1 ...
 $ alarm_ind: int  1 4 1 0 0 2 3 0 0 2 ...
 $ class    : Factor w/ 2 levels "0","1": 2 2 2 1 1 2 2 1 1 2 ...
#使用神经网络构建模型
library(nnet)
#利用nnet建立神经网络
nnet.model <- nnet(class~ele_ind + loss_ind + alarm_ind, trainData, size = 10, decay = 0.05)
[203,] -0.1604506 1.114802 0.3928444 [204,] -0.1604506 1.114802 0.3928444 [205,] -0.1604506 1.114802 0.3928444 [206,] -0.1604506 1.114802 0.3928444 [207,] -0.1604506 1.114802 0.3928444 [208,] -0.1604506 1.114802 0.3928444 [209,] -0.1604506 1.114802 0.3928444 [210,] -0.1604506 1.114802 0.3928444 [211,] -0.1604506 1.114802 0.3928444 [212,] -0.1604506 1.114802 0.3928444 [213,] -0.1604506 1.114802 0.3928444 [214,] -0.1604506 1.114802 0.3928444 [215,] -0.1604506 1.114802 0.3928444 [216,] -0.1604506 1.114802 0.3928444 [217,] -0.1604506 1.114802 0.3928444 [218,] -0.1604506 1.114802 0.3928444 [219,] -0.1604506 1.114802 0.3928444 [220,] -0.1604506 1.114802 0.3928444 [221,] -0.1604506 1.114802 0.3928444 [222,] -0.1604506 1.114802 0.3928444 [223,] -0.1604506 1.114802 0.3928444 [224,] -0.1604506 1.114802 0.3928444 [225,] -0.1604506 1.114802 0.3928444 [226,] -0.1604506 1.114802 0.3928444 [227,] -0.1604506 1.114802 0.3928444 [228,] -0.1604506 1.114802 0.3928444 [229,] -0.1604506 1.114802 0.3928444 [230,] -0.1604506 1.114802 0.3928444 [231,] -0.1604506 1.114802 0.3928444 [232,] -0.1604506 1.114802 0.3928444 [233,] -0.1604506 1.114802 0.3928444 [234,] -0.1604506 1.114802 0.3928444 [235,] -0.1604506 1.114802 0.3928444 [236,] -0.1604506 1.114802 0.3928444 [237,] -0.1604506 1.114802 0.3928444 [238,] -0.1604506 1.114802 0.3928444 [239,] -0.1604506 1.114802 0.3928444 [240,] -0.1604506 1.114802 0.3928444 [241,] -0.1604506 1.114802 0.3928444 [242,] -0.1604506 1.114802 0.3928444 [243,] -0.1604506 1.114802 0.3928444 [244,] -0.1604506 1.114802 0.3928444 [245,] -0.1604506 1.114802 0.3928444 [246,] -0.1604506 1.114802 0.3928444 [247,] -0.1604506 1.114802 0.3928444 [248,] -0.1604506 1.114802 0.3928444 [249,] -0.1604506 1.114802 0.3928444 [250,] -0.1604506 1.114802 0.3928444 [251,] -0.1604506 1.114802 0.3928444 [252,] -0.1604506 1.114802 0.3928444 [253,] -0.1604506 1.114802 0.3928444 [254,] -0.1604506 1.114802 0.3928444 [255,] -0.1604506 1.114802 0.3928444 [256,] -0.1604506 1.114802 0.3928444 [257,] -0.1604506 1.114802 0.3928444 [258,] -0.1604506 1.114802 0.3928444 [259,] -0.1604506 1.114802 0.3928444 [260,] -0.1604506 1.114802 0.3928444 [261,] -0.1604506 1.114802 0.3928444 [262,] -0.1604506 1.114802 0.3928444 [263,] -0.1604506 1.114802 0.3928444 [264,] -0.1604506 1.114802 0.3928444 [265,] -0.1604506 1.114802 0.3928444 [266,] -0.1604506 1.114802 0.3928444 [267,] -0.1604506 1.114802 0.3928444 [268,] -0.1604506 1.114802 0.3928444 [269,] -0.1604506 1.114802 0.3928444 [270,] -0.1604506 1.114802 0.3928444 [271,] -0.1604506 1.114802 0.3928444 [272,] -0.1604506 1.114802 0.3928444 [273,] -0.1604506 1.114802 0.3928444 [274,] -0.1604506 1.114802 0.3928444 [275,] -0.1604506 1.114802 0.3928444 [276,] -0.1604506 1.114802 0.3928444 [277,] -0.1604506 1.114802 0.3928444 [278,] -0.1604506 1.114802 0.3928444 [279,] -0.1604506 1.114802 0.3928444 [280,] -0.1604506 1.114802 0.3928444 [281,] -0.1604506 1.114802 0.3928444 [282,] -0.1604506 1.114802 0.3928444 [283,] -0.1604506 1.114802 0.3928444 [284,] -0.1604506 1.114802 0.3928444 [285,] -0.1604506 1.114802 0.3928444 [286,] -0.1604506 1.114802 0.3928444 [287,] -0.1604506 1.114802 0.3928444 [288,] -0.1604506 1.114802 0.3928444 [289,] -0.1604506 1.114802 0.3928444 [290,] -0.1604506 1.114802 0.3928444 [291,] -0.1604506 1.114802 0.3928444 [292,] -0.1604506 1.114802 0.3928444 [293,] -0.1604506 1.114802 0.3928444 [294,] -0.1604506 1.114802 0.3928444 [295,] -0.1604506 1.114802 0.3928444 [296,] -0.1604506 1.114802 0.3928444 [297,] -0.1604506 1.114802 0.3928444 [298,] -0.1604506 1.114802 0.3928444 [299,] -0.1604506 1.114802 0.3928444 [300,] -0.1604506 1.114802 0.3928444 [301,] -0.1604506 1.114802 0.3928444 [302,] -0.1604506 1.114802 0.3928444 [303,] -0.1604506 1.114802 0.3928444 [304,] -0.1604506 1.114802 0.3928444 [305,] -0.1604506 1.114802 0.3928444 [306,] -0.1604506 1.114802 0.3928444 [307,] -0.1604506 1.114802 0.3928444 [308,] -0.1604506 1.114802 0.3928444 [309,] -0.1604506 1.114802 0.3928444 [310,] -0.1604506 1.114802 0.3928444 [311,] -0.1604506 1.114802 0.3928444 [312,] -0.1604506 1.114802 0.3928444 [313,] -0.1604506 1.114802 0.3928444 [314,] -0.1604506 1.114802 0.3928444 [315,] -0.1604506 1.114802 0.3928444 [316,] -0.1604506 1.114802 0.3928444 [317,] -0.1604506 1.114802 0.3928444 [318,] -0.1604506 1.114802 0.3928444 [319,] -0.1604506 1.114802 0.3928444 [320,] -0.1604506 1.114802 0.3928444 [321,] -0.1604506 1.114802 0.3928444 [322,] -0.1604506 1.114802 0.3928444 [323,] -0.1604506 1.114802 0.3928444 [324,] -0.1604506 1.114802 0.3928444 [325,] -0.1604506 1.114802 0.3928444 [326,] -0.1604506 1.114802 0.3928444 [327,] -0.1604506 1.114802 0.3928444 [328,] -0.1604506 1.114802 0.3928444 [329,] -0.1604506 1.114802 0.3928444 [330,] -0.1604506 1.114802 0.3928444 [331,] -0.1604506 1.114802 0.3928444 [332,] -0.1604506 1.114802 0.3928444 [333,] -0.1604506 1.114802 0.3928444 [ reached getOption("max.print") -- omitted 607 rows ] [[3]] [,1] [,2] [,3] [1,] 3.455055 -0.2956536 0.4491234 [2,] 3.455055 -0.2956536 0.4491234 [3,] 3.455055 -0.2956536 0.4491234 [4,] 3.455055 -0.2956536 0.4491234 [5,] 3.455055 -0.2956536 0.4491234 [6,] 3.455055 -0.2956536 0.4491234 [7,] 3.455055 -0.2956536 0.4491234 [8,] 3.455055 -0.2956536 0.4491234 [9,] 3.455055 -0.2956536 0.4491234 [10,] 3.455055 -0.2956536 0.4491234 [11,] 3.455055 -0.2956536 0.4491234 [12,] 3.455055 -0.2956536 0.4491234 [13,] 3.455055 -0.2956536 0.4491234 [14,] 3.455055 -0.2956536 0.4491234 [15,] 3.455055 -0.2956536 0.4491234 [16,] 3.455055 -0.2956536 0.4491234 [17,] 3.455055 -0.2956536 0.4491234 [18,] 3.455055 -0.2956536 0.4491234 [19,] 3.455055 -0.2956536 0.4491234 [20,] 3.455055 -0.2956536 0.4491234 [21,] 3.455055 -0.2956536 0.4491234 [22,] 3.455055 -0.2956536 0.4491234 [23,] 3.455055 -0.2956536 0.4491234 [24,] 3.455055 -0.2956536 0.4491234 [25,] 3.455055 -0.2956536 0.4491234 [26,] 3.455055 -0.2956536 0.4491234 [27,] 3.455055 -0.2956536 0.4491234 [28,] 3.455055 -0.2956536 0.4491234 [29,] 3.455055 -0.2956536 0.4491234 [30,] 3.455055 -0.2956536 0.4491234 [31,] 3.455055 -0.2956536 0.4491234 [32,] 3.455055 -0.2956536 0.4491234 [33,] 3.455055 -0.2956536 0.4491234 [34,] 3.455055 -0.2956536 0.4491234 [35,] 3.455055 -0.2956536 0.4491234 [36,] 3.455055 -0.2956536 0.4491234 [37,] 3.455055 -0.2956536 0.4491234 [38,] 3.455055 -0.2956536 0.4491234 [39,] 3.455055 -0.2956536 0.4491234 [40,] 3.455055 -0.2956536 0.4491234 [41,] 3.455055 -0.2956536 0.4491234 [42,] 3.455055 -0.2956536 0.4491234 [43,] 3.455055 -0.2956536 0.4491234 [44,] 3.455055 -0.2956536 0.4491234 [45,] 3.455055 -0.2956536 0.4491234 [46,] 3.455055 -0.2956536 0.4491234 [47,] 3.455055 -0.2956536 0.4491234 [48,] 3.455055 -0.2956536 0.4491234 [49,] 3.455055 -0.2956536 0.4491234 [50,] 3.455055 -0.2956536 0.4491234 [51,] 3.455055 -0.2956536 0.4491234 [52,] 3.455055 -0.2956536 0.4491234 [53,] 3.455055 -0.2956536 0.4491234 [54,] 3.455055 -0.2956536 0.4491234 [55,] 3.455055 -0.2956536 0.4491234 [56,] 3.455055 -0.2956536 0.4491234 [57,] 3.455055 -0.2956536 0.4491234 [58,] 3.455055 -0.2956536 0.4491234 [59,] 3.455055 -0.2956536 0.4491234 [60,] 3.455055 -0.2956536 0.4491234 [61,] 3.455055 -0.2956536 0.4491234 [62,] 3.455055 -0.2956536 0.4491234 [63,] 3.455055 -0.2956536 0.4491234 [64,] 3.455055 -0.2956536 0.4491234 [65,] 3.455055 -0.2956536 0.4491234 [66,] 3.455055 -0.2956536 0.4491234 [67,] 3.455055 -0.2956536 0.4491234 [68,] 3.455055 -0.2956536 0.4491234 [69,] 3.455055 -0.2956536 0.4491234 [70,] 3.455055 -0.2956536 0.4491234 [71,] 3.455055 -0.2956536 0.4491234 [72,] 3.455055 -0.2956536 0.4491234 [73,] 3.455055 -0.2956536 0.4491234 [74,] 3.455055 -0.2956536 0.4491234 [75,] 3.455055 -0.2956536 0.4491234 [76,] 3.455055 -0.2956536 0.4491234 [77,] 3.455055 -0.2956536 0.4491234 [78,] 3.455055 -0.2956536 0.4491234 [79,] 3.455055 -0.2956536 0.4491234 [80,] 3.455055 -0.2956536 0.4491234 [81,] 3.455055 -0.2956536 0.4491234 [82,] 3.455055 -0.2956536 0.4491234 [83,] 3.455055 -0.2956536 0.4491234 [84,] 3.455055 -0.2956536 0.4491234 [85,] 3.455055 -0.2956536 0.4491234 [86,] 3.455055 -0.2956536 0.4491234 [87,] 3.455055 -0.2956536 0.4491234 [88,] 3.455055 -0.2956536 0.4491234 [89,] 3.455055 -0.2956536 0.4491234 [90,] 3.455055 -0.2956536 0.4491234 [91,] 3.455055 -0.2956536 0.4491234 [92,] 3.455055 -0.2956536 0.4491234 [93,] 3.455055 -0.2956536 0.4491234 [94,] 3.455055 -0.2956536 0.4491234 [95,] 3.455055 -0.2956536 0.4491234 [96,] 3.455055 -0.2956536 0.4491234 [97,] 3.455055 -0.2956536 0.4491234 [98,] 3.455055 -0.2956536 0.4491234 [99,] 3.455055 -0.2956536 0.4491234 [100,] 3.455055 -0.2956536 0.4491234 [101,] 3.455055 -0.2956536 0.4491234 [102,] 3.455055 -0.2956536 0.4491234 [103,] 3.455055 -0.2956536 0.4491234 [104,] 3.455055 -0.2956536 0.4491234 [105,] 3.455055 -0.2956536 0.4491234 [106,] 3.455055 -0.2956536 0.4491234 [107,] 3.455055 -0.2956536 0.4491234 [108,] 3.455055 -0.2956536 0.4491234 [109,] 3.455055 -0.2956536 0.4491234 [110,] 3.455055 -0.2956536 0.4491234 [111,] 3.455055 -0.2956536 0.4491234 [112,] 3.455055 -0.2956536 0.4491234 [113,] 3.455055 -0.2956536 0.4491234 [114,] 3.455055 -0.2956536 0.4491234 [115,] 3.455055 -0.2956536 0.4491234 [116,] 3.455055 -0.2956536 0.4491234 [117,] 3.455055 -0.2956536 0.4491234 [118,] 3.455055 -0.2956536 0.4491234 [119,] 3.455055 -0.2956536 0.4491234 [120,] 3.455055 -0.2956536 0.4491234 [121,] 3.455055 -0.2956536 0.4491234 [122,] 3.455055 -0.2956536 0.4491234 [123,] 3.455055 -0.2956536 0.4491234 [124,] 3.455055 -0.2956536 0.4491234 [125,] 3.455055 -0.2956536 0.4491234 [126,] 3.455055 -0.2956536 0.4491234 [127,] 3.455055 -0.2956536 0.4491234 [128,] 3.455055 -0.2956536 0.4491234 [129,] 3.455055 -0.2956536 0.4491234 [130,] 3.455055 -0.2956536 0.4491234 [131,] 3.455055 -0.2956536 0.4491234 [132,] 3.455055 -0.2956536 0.4491234 [133,] 3.455055 -0.2956536 0.4491234 [134,] 3.455055 -0.2956536 0.4491234 [135,] 3.455055 -0.2956536 0.4491234 [136,] 3.455055 -0.2956536 0.4491234 [137,] 3.455055 -0.2956536 0.4491234 [138,] 3.455055 -0.2956536 0.4491234 [139,] 3.455055 -0.2956536 0.4491234 [140,] 3.455055 -0.2956536 0.4491234 [141,] 3.455055 -0.2956536 0.4491234 [142,] 3.455055 -0.2956536 0.4491234 [143,] 3.455055 -0.2956536 0.4491234 [144,] 3.455055 -0.2956536 0.4491234 [145,] 3.455055 -0.2956536 0.4491234 [146,] 3.455055 -0.2956536 0.4491234 [147,] 3.455055 -0.2956536 0.4491234 [148,] 3.455055 -0.2956536 0.4491234 [149,] 3.455055 -0.2956536 0.4491234 [150,] 3.455055 -0.2956536 0.4491234 [151,] 3.455055 -0.2956536 0.4491234 [152,] 3.455055 -0.2956536 0.4491234 [153,] 3.455055 -0.2956536 0.4491234 [154,] 3.455055 -0.2956536 0.4491234 [155,] 3.455055 -0.2956536 0.4491234 [156,] 3.455055 -0.2956536 0.4491234 [157,] 3.455055 -0.2956536 0.4491234 [158,] 3.455055 -0.2956536 0.4491234 [159,] 3.455055 -0.2956536 0.4491234 [160,] 3.455055 -0.2956536 0.4491234 [161,] 3.455055 -0.2956536 0.4491234 [162,] 3.455055 -0.2956536 0.4491234 [163,] 3.455055 -0.2956536 0.4491234 [164,] 3.455055 -0.2956536 0.4491234 [165,] 3.455055 -0.2956536 0.4491234 [166,] 3.455055 -0.2956536 0.4491234 [167,] 3.455055 -0.2956536 0.4491234 [168,] 3.455055 -0.2956536 0.4491234 [169,] 3.455055 -0.2956536 0.4491234 [170,] 3.455055 -0.2956536 0.4491234 [171,] 3.455055 -0.2956536 0.4491234 [172,] 3.455055 -0.2956536 0.4491234 [173,] 3.455055 -0.2956536 0.4491234 [174,] 3.455055 -0.2956536 0.4491234 [175,] 3.455055 -0.2956536 0.4491234 [176,] 3.455055 -0.2956536 0.4491234 [177,] 3.455055 -0.2956536 0.4491234 [178,] 3.455055 -0.2956536 0.4491234 [179,] 3.455055 -0.2956536 0.4491234 [180,] 3.455055 -0.2956536 0.4491234 [181,] 3.455055 -0.2956536 0.4491234 [182,] 3.455055 -0.2956536 0.4491234 [183,] 3.455055 -0.2956536 0.4491234 [184,] 3.455055 -0.2956536 0.4491234 [185,] 3.455055 -0.2956536 0.4491234 [186,] 3.455055 -0.2956536 0.4491234 [187,] 3.455055 -0.2956536 0.4491234 [188,] 3.455055 -0.2956536 0.4491234 [189,] 3.455055 -0.2956536 0.4491234 [190,] 3.455055 -0.2956536 0.4491234 [191,] 3.455055 -0.2956536 0.4491234 [192,] 3.455055 -0.2956536 0.4491234 [193,] 3.455055 -0.2956536 0.4491234 [194,] 3.455055 -0.2956536 0.4491234 [195,] 3.455055 -0.2956536 0.4491234 [196,] 3.455055 -0.2956536 0.4491234 [197,] 3.455055 -0.2956536 0.4491234 [198,] 3.455055 -0.2956536 0.4491234 [199,] 3.455055 -0.2956536 0.4491234 [200,] 3.455055 -0.2956536 0.4491234 [201,] 3.455055 -0.2956536 0.4491234 [202,] 3.455055 -0.2956536 0.4491234 [203,] 3.455055 -0.2956536 0.4491234 [204,] 3.455055 -0.2956536 0.4491234 [205,] 3.455055 -0.2956536 0.4491234 [206,] 3.455055 -0.2956536 0.4491234 [207,] 3.455055 -0.2956536 0.4491234 [208,] 3.455055 -0.2956536 0.4491234 [209,] 3.455055 -0.2956536 0.4491234 [210,] 3.455055 -0.2956536 0.4491234 [211,] 3.455055 -0.2956536 0.4491234 [212,] 3.455055 -0.2956536 0.4491234 [213,] 3.455055 -0.2956536 0.4491234 [214,] 3.455055 -0.2956536 0.4491234 [215,] 3.455055 -0.2956536 0.4491234 [216,] 3.455055 -0.2956536 0.4491234 [217,] 3.455055 -0.2956536 0.4491234 [218,] 3.455055 -0.2956536 0.4491234 [219,] 3.455055 -0.2956536 0.4491234 [220,] 3.455055 -0.2956536 0.4491234 [221,] 3.455055 -0.2956536 0.4491234 [222,] 3.455055 -0.2956536 0.4491234 [223,] 3.455055 -0.2956536 0.4491234 [224,] 3.455055 -0.2956536 0.4491234 [225,] 3.455055 -0.2956536 0.4491234 [226,] 3.455055 -0.2956536 0.4491234 [227,] 3.455055 -0.2956536 0.4491234 [228,] 3.455055 -0.2956536 0.4491234 [229,] 3.455055 -0.2956536 0.4491234 [230,] 3.455055 -0.2956536 0.4491234 [231,] 3.455055 -0.2956536 0.4491234 [232,] 3.455055 -0.2956536 0.4491234 [233,] 3.455055 -0.2956536 0.4491234 [234,] 3.455055 -0.2956536 0.4491234 [235,] 3.455055 -0.2956536 0.4491234 [236,] 3.455055 -0.2956536 0.4491234 [237,] 3.455055 -0.2956536 0.4491234 [238,] 3.455055 -0.2956536 0.4491234 [239,] 3.455055 -0.2956536 0.4491234 [240,] 3.455055 -0.2956536 0.4491234 [241,] 3.455055 -0.2956536 0.4491234 [242,] 3.455055 -0.2956536 0.4491234 [243,] 3.455055 -0.2956536 0.4491234 [244,] 3.455055 -0.2956536 0.4491234 [245,] 3.455055 -0.2956536 0.4491234 [246,] 3.455055 -0.2956536 0.4491234 [247,] 3.455055 -0.2956536 0.4491234 [248,] 3.455055 -0.2956536 0.4491234 [249,] 3.455055 -0.2956536 0.4491234 [250,] 3.455055 -0.2956536 0.4491234 [251,] 3.455055 -0.2956536 0.4491234 [252,] 3.455055 -0.2956536 0.4491234 [253,] 3.455055 -0.2956536 0.4491234 [254,] 3.455055 -0.2956536 0.4491234 [255,] 3.455055 -0.2956536 0.4491234 [256,] 3.455055 -0.2956536 0.4491234 [257,] 3.455055 -0.2956536 0.4491234 [258,] 3.455055 -0.2956536 0.4491234 [259,] 3.455055 -0.2956536 0.4491234 [260,] 3.455055 -0.2956536 0.4491234 [261,] 3.455055 -0.2956536 0.4491234 [262,] 3.455055 -0.2956536 0.4491234 [263,] 3.455055 -0.2956536 0.4491234 [264,] 3.455055 -0.2956536 0.4491234 [265,] 3.455055 -0.2956536 0.4491234 [266,] 3.455055 -0.2956536 0.4491234 [267,] 3.455055 -0.2956536 0.4491234 [268,] 3.455055 -0.2956536 0.4491234 [269,] 3.455055 -0.2956536 0.4491234 [270,] 3.455055 -0.2956536 0.4491234 [271,] 3.455055 -0.2956536 0.4491234 [272,] 3.455055 -0.2956536 0.4491234 [273,] 3.455055 -0.2956536 0.4491234 [274,] 3.455055 -0.2956536 0.4491234 [275,] 3.455055 -0.2956536 0.4491234 [276,] 3.455055 -0.2956536 0.4491234 [277,] 3.455055 -0.2956536 0.4491234 [278,] 3.455055 -0.2956536 0.4491234 [279,] 3.455055 -0.2956536 0.4491234 [280,] 3.455055 -0.2956536 0.4491234 [281,] 3.455055 -0.2956536 0.4491234 [282,] 3.455055 -0.2956536 0.4491234 [283,] 3.455055 -0.2956536 0.4491234 [284,] 3.455055 -0.2956536 0.4491234 [285,] 3.455055 -0.2956536 0.4491234 [286,] 3.455055 -0.2956536 0.4491234 [287,] 3.455055 -0.2956536 0.4491234 [288,] 3.455055 -0.2956536 0.4491234 [289,] 3.455055 -0.2956536 0.4491234 [290,] 3.455055 -0.2956536 0.4491234 [291,] 3.455055 -0.2956536 0.4491234 [292,] 3.455055 -0.2956536 0.4491234 [293,] 3.455055 -0.2956536 0.4491234 [294,] 3.455055 -0.2956536 0.4491234 [295,] 3.455055 -0.2956536 0.4491234 [296,] 3.455055 -0.2956536 0.4491234 [297,] 3.455055 -0.2956536 0.4491234 [298,] 3.455055 -0.2956536 0.4491234 [299,] 3.455055 -0.2956536 0.4491234 [300,] 3.455055 -0.2956536 0.4491234 [301,] 3.455055 -0.2956536 0.4491234 [302,] 3.455055 -0.2956536 0.4491234 [303,] 3.455055 -0.2956536 0.4491234 [304,] 3.455055 -0.2956536 0.4491234 [305,] 3.455055 -0.2956536 0.4491234 [306,] 3.455055 -0.2956536 0.4491234 [307,] 3.455055 -0.2956536 0.4491234 [308,] 3.455055 -0.2956536 0.4491234 [309,] 3.455055 -0.2956536 0.4491234 [310,] 3.455055 -0.2956536 0.4491234 [311,] 3.455055 -0.2956536 0.4491234 [312,] 3.455055 -0.2956536 0.4491234 [313,] 3.455055 -0.2956536 0.4491234 [314,] 3.455055 -0.2956536 0.4491234 [315,] 3.455055 -0.2956536 0.4491234 [316,] 3.455055 -0.2956536 0.4491234 [317,] 3.455055 -0.2956536 0.4491234 [318,] 3.455055 -0.2956536 0.4491234 [319,] 3.455055 -0.2956536 0.4491234 [320,] 3.455055 -0.2956536 0.4491234 [321,] 3.455055 -0.2956536 0.4491234 [322,] 3.455055 -0.2956536 0.4491234 [323,] 3.455055 -0.2956536 0.4491234 [324,] 3.455055 -0.2956536 0.4491234 [325,] 3.455055 -0.2956536 0.4491234 [326,] 3.455055 -0.2956536 0.4491234 [327,] 3.455055 -0.2956536 0.4491234 [328,] 3.455055 -0.2956536 0.4491234 [329,] 3.455055 -0.2956536 0.4491234 [330,] 3.455055 -0.2956536 0.4491234 [331,] 3.455055 -0.2956536 0.4491234 [332,] 3.455055 -0.2956536 0.4491234 [333,] 3.455055 -0.2956536 0.4491234 [ reached getOption("max.print") -- omitted 607 rows ] > x1 = x[,1] Error in x[, 1] : incorrect number of dimensions > x1 = x[1] > x1 [[1]] [,1] [,2] [,3] [1,] -0.1493534 -0.658893 -0.2717798 [2,] -0.1493534 -0.658893 -0.2717798 [3,] -0.1493534 -0.658893 -0.2717798 [4,] -0.1493534 -0.658893 -0.2717798 [5,] -0.1493534 -0.658893 -0.2717798 [6,] -0.1493534 -0.658893 -0.2717798 [7,] -0.1493534 -0.658893 -0.2717798 [8,] -0.1493534 -0.658893 -0.2717798 [9,] -0.1493534 -0.658893 -0.2717798 [10,] -0.1493534 -0.658893 -0.2717798 [11,] -0.1493534 -0.658893 -0.2717798 [12,] -0.1493534 -0.658893 -0.2717798 [13,] -0.1493534 -0.658893 -0.2717798 [14,] -0.1493534 -0.658893 -0.2717798 [15,] -0.1493534 -0.658893 -0.2717798 [16,] -0.1493534 -0.658893 -0.2717798 [17,] -0.1493534 -0.658893 -0.2717798 [18,] -0.1493534 -0.658893 -0.2717798 [19,] -0.1493534 -0.658893 -0.2717798 [20,] -0.1493534 -0.658893 -0.2717798 [21,] -0.1493534 -0.658893 -0.2717798 [22,] -0.1493534 -0.658893 -0.2717798 [23,] -0.1493534 -0.658893 -0.2717798 [24,] -0.1493534 -0.658893 -0.2717798 [25,] -0.1493534 -0.658893 -0.2717798 [26,] -0.1493534 -0.658893 -0.2717798 [27,] -0.1493534 -0.658893 -0.2717798 [28,] -0.1493534 -0.658893 -0.2717798 [29,] -0.1493534 -0.658893 -0.2717798 [30,] -0.1493534 -0.658893 -0.2717798 [31,] -0.1493534 -0.658893 -0.2717798 [32,] -0.1493534 -0.658893 -0.2717798 [33,] -0.1493534 -0.658893 -0.2717798 [34,] -0.1493534 -0.658893 -0.2717798 [35,] -0.1493534 -0.658893 -0.2717798 [36,] -0.1493534 -0.658893 -0.2717798 [37,] -0.1493534 -0.658893 -0.2717798 [38,] -0.1493534 -0.658893 -0.2717798 [39,] -0.1493534 -0.658893 -0.2717798 [40,] -0.1493534 -0.658893 -0.2717798 [41,] -0.1493534 -0.658893 -0.2717798 [42,] -0.1493534 -0.658893 -0.2717798 [43,] -0.1493534 -0.658893 -0.2717798 [44,] -0.1493534 -0.658893 -0.2717798 [45,] -0.1493534 -0.658893 -0.2717798 [46,] -0.1493534 -0.658893 -0.2717798 [47,] -0.1493534 -0.658893 -0.2717798 [48,] -0.1493534 -0.658893 -0.2717798 [49,] -0.1493534 -0.658893 -0.2717798 [50,] -0.1493534 -0.658893 -0.2717798 [51,] -0.1493534 -0.658893 -0.2717798 [52,] -0.1493534 -0.658893 -0.2717798 [53,] -0.1493534 -0.658893 -0.2717798 [54,] -0.1493534 -0.658893 -0.2717798 [55,] -0.1493534 -0.658893 -0.2717798 [56,] -0.1493534 -0.658893 -0.2717798 [57,] -0.1493534 -0.658893 -0.2717798 [58,] -0.1493534 -0.658893 -0.2717798 [59,] -0.1493534 -0.658893 -0.2717798 [60,] -0.1493534 -0.658893 -0.2717798 [61,] -0.1493534 -0.658893 -0.2717798 [62,] -0.1493534 -0.658893 -0.2717798 [63,] -0.1493534 -0.658893 -0.2717798 [64,] -0.1493534 -0.658893 -0.2717798 [65,] -0.1493534 -0.658893 -0.2717798 [66,] -0.1493534 -0.658893 -0.2717798 [67,] -0.1493534 -0.658893 -0.2717798 [68,] -0.1493534 -0.658893 -0.2717798 [69,] -0.1493534 -0.658893 -0.2717798 [70,] -0.1493534 -0.658893 -0.2717798 [71,] -0.1493534 -0.658893 -0.2717798 [72,] -0.1493534 -0.658893 -0.2717798 [73,] -0.1493534 -0.658893 -0.2717798 [74,] -0.1493534 -0.658893 -0.2717798 [75,] -0.1493534 -0.658893 -0.2717798 [76,] -0.1493534 -0.658893 -0.2717798 [77,] -0.1493534 -0.658893 -0.2717798 [78,] -0.1493534 -0.658893 -0.2717798 [79,] -0.1493534 -0.658893 -0.2717798 [80,] -0.1493534 -0.658893 -0.2717798 [81,] -0.1493534 -0.658893 -0.2717798 [82,] -0.1493534 -0.658893 -0.2717798 [83,] -0.1493534 -0.658893 -0.2717798 [84,] -0.1493534 -0.658893 -0.2717798 [85,] -0.1493534 -0.658893 -0.2717798 [86,] -0.1493534 -0.658893 -0.2717798 [87,] -0.1493534 -0.658893 -0.2717798 [88,] -0.1493534 -0.658893 -0.2717798 [89,] -0.1493534 -0.658893 -0.2717798 [90,] -0.1493534 -0.658893 -0.2717798 [91,] -0.1493534 -0.658893 -0.2717798 [92,] -0.1493534 -0.658893 -0.2717798 [93,] -0.1493534 -0.658893 -0.2717798 [94,] -0.1493534 -0.658893 -0.2717798 [95,] -0.1493534 -0.658893 -0.2717798 [96,] -0.1493534 -0.658893 -0.2717798 [97,] -0.1493534 -0.658893 -0.2717798 [98,] -0.1493534 -0.658893 -0.2717798 [99,] -0.1493534 -0.658893 -0.2717798 [100,] -0.1493534 -0.658893 -0.2717798 [101,] -0.1493534 -0.658893 -0.2717798 [102,] -0.1493534 -0.658893 -0.2717798 [103,] -0.1493534 -0.658893 -0.2717798 [104,] -0.1493534 -0.658893 -0.2717798 [105,] -0.1493534 -0.658893 -0.2717798 [106,] -0.1493534 -0.658893 -0.2717798 [107,] -0.1493534 -0.658893 -0.2717798 [108,] -0.1493534 -0.658893 -0.2717798 [109,] -0.1493534 -0.658893 -0.2717798 [110,] -0.1493534 -0.658893 -0.2717798 [111,] -0.1493534 -0.658893 -0.2717798 [112,] -0.1493534 -0.658893 -0.2717798 [113,] -0.1493534 -0.658893 -0.2717798 [114,] -0.1493534 -0.658893 -0.2717798 [115,] -0.1493534 -0.658893 -0.2717798 [116,] -0.1493534 -0.658893 -0.2717798 [117,] -0.1493534 -0.658893 -0.2717798 [118,] -0.1493534 -0.658893 -0.2717798 [119,] -0.1493534 -0.658893 -0.2717798 [120,] -0.1493534 -0.658893 -0.2717798 [121,] -0.1493534 -0.658893 -0.2717798 [122,] -0.1493534 -0.658893 -0.2717798 [123,] -0.1493534 -0.658893 -0.2717798 [124,] -0.1493534 -0.658893 -0.2717798 [125,] -0.1493534 -0.658893 -0.2717798 [126,] -0.1493534 -0.658893 -0.2717798 [127,] -0.1493534 -0.658893 -0.2717798 [128,] -0.1493534 -0.658893 -0.2717798 [129,] -0.1493534 -0.658893 -0.2717798 [130,] -0.1493534 -0.658893 -0.2717798 [131,] -0.1493534 -0.658893 -0.2717798 [132,] -0.1493534 -0.658893 -0.2717798 [133,] -0.1493534 -0.658893 -0.2717798 [134,] -0.1493534 -0.658893 -0.2717798 [135,] -0.1493534 -0.658893 -0.2717798 [136,] -0.1493534 -0.658893 -0.2717798 [137,] -0.1493534 -0.658893 -0.2717798 [138,] -0.1493534 -0.658893 -0.2717798 [139,] -0.1493534 -0.658893 -0.2717798 [140,] -0.1493534 -0.658893 -0.2717798 [141,] -0.1493534 -0.658893 -0.2717798 [142,] -0.1493534 -0.658893 -0.2717798 [143,] -0.1493534 -0.658893 -0.2717798 [144,] -0.1493534 -0.658893 -0.2717798 [145,] -0.1493534 -0.658893 -0.2717798 [146,] -0.1493534 -0.658893 -0.2717798 [147,] -0.1493534 -0.658893 -0.2717798 [148,] -0.1493534 -0.658893 -0.2717798 [149,] -0.1493534 -0.658893 -0.2717798 [150,] -0.1493534 -0.658893 -0.2717798 [151,] -0.1493534 -0.658893 -0.2717798 [152,] -0.1493534 -0.658893 -0.2717798 [153,] -0.1493534 -0.658893 -0.2717798 [154,] -0.1493534 -0.658893 -0.2717798 [155,] -0.1493534 -0.658893 -0.2717798 [156,] -0.1493534 -0.658893 -0.2717798 [157,] -0.1493534 -0.658893 -0.2717798 [158,] -0.1493534 -0.658893 -0.2717798 [159,] -0.1493534 -0.658893 -0.2717798 [160,] -0.1493534 -0.658893 -0.2717798 [161,] -0.1493534 -0.658893 -0.2717798 [162,] -0.1493534 -0.658893 -0.2717798 [163,] -0.1493534 -0.658893 -0.2717798 [164,] -0.1493534 -0.658893 -0.2717798 [165,] -0.1493534 -0.658893 -0.2717798 [166,] -0.1493534 -0.658893 -0.2717798 [167,] -0.1493534 -0.658893 -0.2717798 [168,] -0.1493534 -0.658893 -0.2717798 [169,] -0.1493534 -0.658893 -0.2717798 [170,] -0.1493534 -0.658893 -0.2717798 [171,] -0.1493534 -0.658893 -0.2717798 [172,] -0.1493534 -0.658893 -0.2717798 [173,] -0.1493534 -0.658893 -0.2717798 [174,] -0.1493534 -0.658893 -0.2717798 [175,] -0.1493534 -0.658893 -0.2717798 [176,] -0.1493534 -0.658893 -0.2717798 [177,] -0.1493534 -0.658893 -0.2717798 [178,] -0.1493534 -0.658893 -0.2717798 [179,] -0.1493534 -0.658893 -0.2717798 [180,] -0.1493534 -0.658893 -0.2717798 [181,] -0.1493534 -0.658893 -0.2717798 [182,] -0.1493534 -0.658893 -0.2717798 [183,] -0.1493534 -0.658893 -0.2717798 [184,] -0.1493534 -0.658893 -0.2717798 [185,] -0.1493534 -0.658893 -0.2717798 [186,] -0.1493534 -0.658893 -0.2717798 [187,] -0.1493534 -0.658893 -0.2717798 [188,] -0.1493534 -0.658893 -0.2717798 [189,] -0.1493534 -0.658893 -0.2717798 [190,] -0.1493534 -0.658893 -0.2717798 [191,] -0.1493534 -0.658893 -0.2717798 [192,] -0.1493534 -0.658893 -0.2717798 [193,] -0.1493534 -0.658893 -0.2717798 [194,] -0.1493534 -0.658893 -0.2717798 [195,] -0.1493534 -0.658893 -0.2717798 [196,] -0.1493534 -0.658893 -0.2717798 [197,] -0.1493534 -0.658893 -0.2717798 [198,] -0.1493534 -0.658893 -0.2717798 [199,] -0.1493534 -0.658893 -0.2717798 [200,] -0.1493534 -0.658893 -0.2717798 [201,] -0.1493534 -0.658893 -0.2717798 [202,] -0.1493534 -0.658893 -0.2717798 [203,] -0.1493534 -0.658893 -0.2717798 [204,] -0.1493534 -0.658893 -0.2717798 [205,] -0.1493534 -0.658893 -0.2717798 [206,] -0.1493534 -0.658893 -0.2717798 [207,] -0.1493534 -0.658893 -0.2717798 [208,] -0.1493534 -0.658893 -0.2717798 [209,] -0.1493534 -0.658893 -0.2717798 [210,] -0.1493534 -0.658893 -0.2717798 [211,] -0.1493534 -0.658893 -0.2717798 [212,] -0.1493534 -0.658893 -0.2717798 [213,] -0.1493534 -0.658893 -0.2717798 [214,] -0.1493534 -0.658893 -0.2717798 [215,] -0.1493534 -0.658893 -0.2717798 [216,] -0.1493534 -0.658893 -0.2717798 [217,] -0.1493534 -0.658893 -0.2717798 [218,] -0.1493534 -0.658893 -0.2717798 [219,] -0.1493534 -0.658893 -0.2717798 [220,] -0.1493534 -0.658893 -0.2717798 [221,] -0.1493534 -0.658893 -0.2717798 [222,] -0.1493534 -0.658893 -0.2717798 [223,] -0.1493534 -0.658893 -0.2717798 [224,] -0.1493534 -0.658893 -0.2717798 [225,] -0.1493534 -0.658893 -0.2717798 [226,] -0.1493534 -0.658893 -0.2717798 [227,] -0.1493534 -0.658893 -0.2717798 [228,] -0.1493534 -0.658893 -0.2717798 [229,] -0.1493534 -0.658893 -0.2717798 [230,] -0.1493534 -0.658893 -0.2717798 [231,] -0.1493534 -0.658893 -0.2717798 [232,] -0.1493534 -0.658893 -0.2717798 [233,] -0.1493534 -0.658893 -0.2717798 [234,] -0.1493534 -0.658893 -0.2717798 [235,] -0.1493534 -0.658893 -0.2717798 [236,] -0.1493534 -0.658893 -0.2717798 [237,] -0.1493534 -0.658893 -0.2717798 [238,] -0.1493534 -0.658893 -0.2717798 [239,] -0.1493534 -0.658893 -0.2717798 [240,] -0.1493534 -0.658893 -0.2717798 [241,] -0.1493534 -0.658893 -0.2717798 [242,] -0.1493534 -0.658893 -0.2717798 [243,] -0.1493534 -0.658893 -0.2717798 [244,] -0.1493534 -0.658893 -0.2717798 [245,] -0.1493534 -0.658893 -0.2717798 [246,] -0.1493534 -0.658893 -0.2717798 [247,] -0.1493534 -0.658893 -0.2717798 [248,] -0.1493534 -0.658893 -0.2717798 [249,] -0.1493534 -0.658893 -0.2717798 [250,] -0.1493534 -0.658893 -0.2717798 [251,] -0.1493534 -0.658893 -0.2717798 [252,] -0.1493534 -0.658893 -0.2717798 [253,] -0.1493534 -0.658893 -0.2717798 [254,] -0.1493534 -0.658893 -0.2717798 [255,] -0.1493534 -0.658893 -0.2717798 [256,] -0.1493534 -0.658893 -0.2717798 [257,] -0.1493534 -0.658893 -0.2717798 [258,] -0.1493534 -0.658893 -0.2717798 [259,] -0.1493534 -0.658893 -0.2717798 [260,] -0.1493534 -0.658893 -0.2717798 [261,] -0.1493534 -0.658893 -0.2717798 [262,] -0.1493534 -0.658893 -0.2717798 [263,] -0.1493534 -0.658893 -0.2717798 [264,] -0.1493534 -0.658893 -0.2717798 [265,] -0.1493534 -0.658893 -0.2717798 [266,] -0.1493534 -0.658893 -0.2717798 [267,] -0.1493534 -0.658893 -0.2717798 [268,] -0.1493534 -0.658893 -0.2717798 [269,] -0.1493534 -0.658893 -0.2717798 [270,] -0.1493534 -0.658893 -0.2717798 [271,] -0.1493534 -0.658893 -0.2717798 [272,] -0.1493534 -0.658893 -0.2717798 [273,] -0.1493534 -0.658893 -0.2717798 [274,] -0.1493534 -0.658893 -0.2717798 [275,] -0.1493534 -0.658893 -0.2717798 [276,] -0.1493534 -0.658893 -0.2717798 [277,] -0.1493534 -0.658893 -0.2717798 [278,] -0.1493534 -0.658893 -0.2717798 [279,] -0.1493534 -0.658893 -0.2717798 [280,] -0.1493534 -0.658893 -0.2717798 [281,] -0.1493534 -0.658893 -0.2717798 [282,] -0.1493534 -0.658893 -0.2717798 [283,] -0.1493534 -0.658893 -0.2717798 [284,] -0.1493534 -0.658893 -0.2717798 [285,] -0.1493534 -0.658893 -0.2717798 [286,] -0.1493534 -0.658893 -0.2717798 [287,] -0.1493534 -0.658893 -0.2717798 [288,] -0.1493534 -0.658893 -0.2717798 [289,] -0.1493534 -0.658893 -0.2717798 [290,] -0.1493534 -0.658893 -0.2717798 [291,] -0.1493534 -0.658893 -0.2717798 [292,] -0.1493534 -0.658893 -0.2717798 [293,] -0.1493534 -0.658893 -0.2717798 [294,] -0.1493534 -0.658893 -0.2717798 [295,] -0.1493534 -0.658893 -0.2717798 [296,] -0.1493534 -0.658893 -0.2717798 [297,] -0.1493534 -0.658893 -0.2717798 [298,] -0.1493534 -0.658893 -0.2717798 [299,] -0.1493534 -0.658893 -0.2717798 [300,] -0.1493534 -0.658893 -0.2717798 [301,] -0.1493534 -0.658893 -0.2717798 [302,] -0.1493534 -0.658893 -0.2717798 [303,] -0.1493534 -0.658893 -0.2717798 [304,] -0.1493534 -0.658893 -0.2717798 [305,] -0.1493534 -0.658893 -0.2717798 [306,] -0.1493534 -0.658893 -0.2717798 [307,] -0.1493534 -0.658893 -0.2717798 [308,] -0.1493534 -0.658893 -0.2717798 [309,] -0.1493534 -0.658893 -0.2717798 [310,] -0.1493534 -0.658893 -0.2717798 [311,] -0.1493534 -0.658893 -0.2717798 [312,] -0.1493534 -0.658893 -0.2717798 [313,] -0.1493534 -0.658893 -0.2717798 [314,] -0.1493534 -0.658893 -0.2717798 [315,] -0.1493534 -0.658893 -0.2717798 [316,] -0.1493534 -0.658893 -0.2717798 [317,] -0.1493534 -0.658893 -0.2717798 [318,] -0.1493534 -0.658893 -0.2717798 [319,] -0.1493534 -0.658893 -0.2717798 [320,] -0.1493534 -0.658893 -0.2717798 [321,] -0.1493534 -0.658893 -0.2717798 [322,] -0.1493534 -0.658893 -0.2717798 [323,] -0.1493534 -0.658893 -0.2717798 [324,] -0.1493534 -0.658893 -0.2717798 [325,] -0.1493534 -0.658893 -0.2717798 [326,] -0.1493534 -0.658893 -0.2717798 [327,] -0.1493534 -0.658893 -0.2717798 [328,] -0.1493534 -0.658893 -0.2717798 [329,] -0.1493534 -0.658893 -0.2717798 [330,] -0.1493534 -0.658893 -0.2717798 [331,] -0.1493534 -0.658893 -0.2717798 [332,] -0.1493534 -0.658893 -0.2717798 [333,] -0.1493534 -0.658893 -0.2717798 [ reached getOption("max.print") -- omitted 607 rows ] > juli1 = juli[1] > juli2 = juli[2] > juli3 = juli[3] > dist = data.frame(juli1, juli2, juli3) > View(dist) > colnames(dist) <- c('juli1', 'juli2', 'juli3') > y = apply(dist, 1, min) > y [1] 1.2839514 1.2517772 1.1052795 1.5070744 1.4935138 0.9726273 0.8921393 0.9597807 [9] 1.0796595 1.0488114 0.6159521 1.0597333 1.0975862 1.4545486 1.4207439 1.0816366 [17] 2.4048476 0.2861651 0.9661754 1.3203545 1.2949491 1.3987975 0.6928462 0.9798814 [25] 0.6325604 1.2926673 1.5713442 1.1522974 0.6286930 5.5058217 1.1768097 0.6037162 [33] 1.3051681 0.9464992 0.4643231 1.4708567 0.7424111 1.3555286 3.1001436 1.0507244 [41] 0.8439410 1.4240501 1.1827495 0.6438475 0.8841970 0.8055016 1.0505353 0.5552708 [49] 1.2919281 1.0715975 1.3171011 1.8530298 1.6843018 1.0936926 0.8152268 0.4500286 [57] 0.8841592 2.2107706 1.0473566 1.0244698 0.7398935 0.9720879 1.1936466 1.3228729 [65] 0.9834741 1.0023424 1.0432600 0.9211457 1.3713181 1.0388900 1.4831576 1.0446892 [73] 0.8611032 1.0666477 1.3811832 0.7429663 1.2167127 1.0988258 0.7188866 1.3123011 [81] 1.3861779 1.0776628 0.5389992 1.0653812 1.1816154 0.7753244 1.0017056 1.0768776 [89] 1.0351799 0.2978925 0.6418134 1.1217043 1.5621522 0.7424412 0.9598346 1.5982183 [97] 1.2035453 0.4941361 0.4020193 1.3480132 0.8968158 0.9457947 1.7271597 1.1043144 [105] 1.3140138 1.2023263 1.2047381 0.7257287 1.2473410 1.0251931 0.4051376 1.2259243 [113] 1.5983494 1.0829995 0.5511577 2.2837502 1.1996493 1.2984391 0.3631780 0.7039784 [121] 1.3479714 1.5546965 1.1581293 1.1325073 1.2384725 1.4306388 0.3347727 0.9377885 [129] 1.5933367 1.8630912 1.4738865 1.0206379 0.9899630 1.0059593 0.8987748 0.7843134 [137] 1.0557005 1.3127282 1.4868505 1.3524569 1.3107396 1.1718289 0.8424027 0.7687681 [145] 0.3840095 0.6969193 1.4316009 0.2908066 0.8668981 1.6141233 1.2046086 0.8715482 [153] 0.9968797 0.9636232 1.1557989 1.5130763 1.3197081 1.1133957 1.4560506 0.8665945 [161] 1.1684736 1.0754526 1.4902143 0.9895615 0.5466386 0.8408925 0.8705366 0.6394344 [169] 0.3215736 0.4849082 0.6758050 1.1300405 1.1763062 1.1273946 1.0581313 1.4060679 [177] 0.9389915 0.5535159 1.1141892 1.0912659 1.2498473 1.0798504 0.9431308 1.4791674 [185] 1.1454491 1.1220533 0.1605346 0.8745886 1.1120990 0.6669449 0.8276200 1.0920278 [193] 1.1489228 0.5550147 1.0548300 1.1398306 1.4955479 1.3552737 0.7975900 1.3604131 [201] 0.4564041 0.4961539 0.9691897 0.8691432 0.6231899 1.4609199 0.8045874 1.2412889 [209] 0.9560649 0.4915211 0.7429527 1.4128889 0.6900214 1.0425451 1.2190204 0.8717731 [217] 1.1038467 0.6005712 0.9159237 0.6918378 1.4822200 0.8709222 1.2206467 0.4787106 [225] 1.3636101 5.3579148 0.8842671 1.0043205 1.2397042 1.1304026 1.6138967 0.7829579 [233] 1.4375962 1.4754184 1.5482245 0.9110524 2.1435041 0.9849496 0.7030380 1.4998396 [241] 0.9838546 1.2649096 0.7003884 1.5043285 1.2141310 1.3468569 0.4211875 0.5016135 [249] 1.3179935 1.4700683 1.0127141 2.2931364 1.5279684 1.0394141 0.7735913 1.8600937 [257] 1.2523426 0.1744778 1.4197043 1.0254327 0.2392494 1.1073483 1.1355131 1.4675341 [265] 0.9577999 1.1856144 0.7666811 0.7225896 1.7060141 1.3333393 1.0600361 0.7690634 [273] 1.3223654 0.2499185 0.4633498 1.2939895 1.1791938 1.1969636 0.4309354 1.1659037 [281] 1.1460749 1.1508381 1.0191954 0.5998564 0.8234549 1.4408193 1.2722395 0.8608374 [289] 0.8912637 1.0076047 1.0315105 1.5363909 0.9943001 1.4883903 1.0219607 1.3085799 [297] 1.2566572 1.1234713 0.7745607 0.7573539 0.1280823 0.8732647 1.1811365 1.1112783 [305] 1.5854657 1.0109497 1.3876504 0.8288070 0.9787849 0.5775379 1.1651816 1.0957784 [313] 0.5020928 0.5589391 0.9585456 1.2532868 0.6936860 2.2314103 1.3364297 0.9759277 [321] 0.4355542 1.2516414 0.5230440 0.8621161 1.5326653 1.3380629 1.1131484 0.7472479 [329] 0.8960827 0.9576644 1.4445607 0.7158241 0.6571699 1.5236752 1.1791586 0.7694449 [337] 0.7203636 1.2391367 8.1495960 0.9801997 1.4521694 1.0408281 0.9243646 1.2131164 [345] 0.6085620 0.8447841 0.9531615 0.9455160 0.6596088 1.0995886 1.1383126 0.8187668 [353] 1.2313983 0.7983616 1.2822536 0.4928538 2.1047009 0.5437321 1.2934844 0.6950751 [361] 0.9542976 1.0126004 1.0886037 0.6574972 0.9866520 0.8043054 0.9156735 0.8592554 [369] 1.1602786 1.7178113 1.3969374 1.1071634 1.0324079 0.6639653 1.1813941 1.2440756 [377] 0.9649058 1.2931110 1.6557284 1.1590156 1.1840715 1.3068176 1.2542298 1.0233000 [385] 0.7887185 1.0343381 0.7913306 1.3493341 0.8229570 0.7129816 1.5419717 1.0242896 [393] 0.7129623 1.1579323 0.6126775 0.9154135 0.5178629 1.0260977 1.2532844 1.9539405 [401] 1.0793116 1.0659384 1.0464752 0.4411357 1.1519487 1.5673818 1.2302121 1.0309159 [409] 1.4306000 1.3484580 1.1754497 1.0779455 1.1146398 1.0368314 0.7619855 0.6156820 [417] 0.5784987 0.9912607 0.4225005 0.6026715 0.8424346 0.9594051 1.3426729 0.6902286 [425] 1.0200561 0.7854999 0.4498094 1.1542191 0.9419381 0.5301805 1.3459199 1.1832069 [433] 1.3178452 1.0898924 0.6531858 1.4078479 1.1044566 1.0753511 0.5456547 1.2808286 [441] 0.7812876 0.3181437 1.0843608 1.0568619 1.3858093 1.3830416 1.0094683 0.7941849 [449] 0.8753278 1.1061292 0.9210019 0.9222120 1.1198201 0.4416677 0.7239107 1.4268632 [457] 0.9065780 0.6545739 0.7167731 0.9751824 1.3891474 0.5655475 1.2059896 0.9593023 [465] 1.0981839 1.2839040 1.0857146 1.4028372 1.4181303 1.0849792 1.0937756 0.9629356 [473] 1.4621202 1.2946438 1.2119843 1.1713047 1.8615012 1.2463369 1.7145545 0.6261349 [481] 1.7205662 1.3175104 1.1851732 6.7226493 1.1306398 0.7763717 1.2311144 0.8408301 [489] 1.2914871 0.7262230 1.7935285 1.0254019 1.3933172 1.1716277 1.2915157 1.2379393 [497] 1.4984881 0.8153921 0.9895112 1.2091044 1.0583671 1.3834109 1.0755894 0.5557379 [505] 0.8155748 1.0063111 0.6783922 1.8651345 0.7920476 1.1173837 0.9243145 1.6990830 [513] 1.0899565 1.0096415 1.0688348 0.9247384 0.3362163 1.1835113 1.1767888 0.3992950 [521] 1.5031308 0.9795107 1.2226379 0.9538496 7.3607207 2.1624678 0.5466497 1.4793876 [529] 1.5659406 0.9569004 0.6318081 1.2680456 1.0944916 1.2645807 1.2111500 1.5102204 [537] 1.1662645 1.4086313 1.2819908 0.2578604 1.0996600 0.8127780 0.5698445 0.8213166 [545] 1.7438906 1.1794479 1.1677803 1.2243349 0.6700831 1.5031828 1.5022064 1.1510338 [553] 1.1235531 1.2472845 1.0567613 0.8163719 1.1663425 0.9744137 1.8280838 0.6025739 [561] 0.8447845 0.9428083 1.1686558 1.5320960 1.2334774 0.7626252 1.4222879 0.8216348 [569] 1.3188548 0.5717187 1.6319220 1.6282943 1.4051307 1.1699042 0.4788885 0.9245620 [577] 0.6728018 1.1792337 1.5204019 0.9380297 0.8175747 1.6486445 1.2575291 1.2001917 [585] 1.0361429 1.3451754 0.9854510 0.3916743 1.0074249 1.4795447 0.7315399 0.9170269 [593] 0.6726788 1.1400752 1.8974033 0.6668925 1.3160288 0.5829186 1.1374810 0.7212238 [601] 0.4029057 0.7471073 1.4190277 1.1812355 1.5668834 1.3393016 0.5577225 1.2492498 [609] 0.8713848 1.3724018 1.5441540 1.0760632 0.7390731 1.5150137 1.0501453 0.9417341 [617] 1.4632591 0.6506913 0.5536888 0.7522189 1.4454102 1.1845700 0.9397655 1.0423330 [625] 1.0527009 2.3179884 1.2105093 1.2615439 0.6398723 0.6730281 0.7341352 1.3923201 [633] 1.8094685 0.8339744 1.2576877 1.1016637 0.6375617 1.2870095 1.5405691 0.8497679 [641] 2.4977510 1.3455889 0.7428110 1.2514015 0.6077994 1.4118518 1.4725076 1.3524016 [649] 0.9145420 0.9059670 1.2199542 1.1449830 0.7217522 3.3299508 1.3759212 1.1725989 [657] 1.2378863 1.2327485 1.2339038 0.1553428 0.5507687 1.4858672 0.7224308 1.0881287 [665] 1.3174189 0.1089261 1.5215424 0.8558387 1.5862416 4.5950978 1.5066765 0.5075528 [673] 0.7959311 1.7374380 1.2137935 1.6781089 1.4256482 0.7179093 1.4537657 1.0982290 [681] 0.2625644 0.9407392 0.9528060 1.4204629 0.6396742 1.1104935 0.9989661 0.7670441 [689] 0.5012360 0.7652255 1.1181520 1.5973491 0.5495272 0.9766241 1.5729960 0.8916578 [697] 1.3287877 1.5292093 0.6357204 0.3911841 0.6838091 1.0120706 1.3733250 1.2901076 [705] 1.2818088 1.3354822 1.3806010 1.0555691 0.6892187 0.5773910 1.3859900 0.7799393 [713] 0.7174006 0.4748022 0.7681028 1.0485436 0.9709246 0.8992905 0.9234304 1.1247343 [721] 2.0227839 1.0407366 1.5800071 1.1231196 1.4048875 1.1098788 0.9472814 1.3526454 [729] 0.9561335 1.3663523 1.3188120 0.8900342 0.5694400 0.7783630 0.9319654 1.1237027 [737] 1.3642690 1.3187594 1.2482680 1.0488772 1.2938513 1.3580272 0.8490998 1.0359414 [745] 0.9270210 0.4286338 0.8452944 0.5947655 1.4761152 1.1273610 0.5907828 0.4428753 [753] 1.2266418 0.5527903 0.6698934 1.4055399 1.1511738 0.9171768 1.5482786 0.9790308 [761] 1.3395725 0.7971436 1.5218741 0.9784529 1.2201897 0.4563178 0.8263704 1.6064781 [769] 0.8974280 0.9953865 1.6134941 1.5072936 1.3398629 1.1019856 0.9489962 1.4880601 [777] 1.3767848 0.4349203 0.9882961 0.9162950 1.6760009 1.0595125 0.9969116 1.2097352 [785] 1.2222840 1.0132668 1.6311103 1.3224185 0.9466660 1.0341740 1.0082048 0.7820773 [793] 0.8813724 2.1416474 1.1947087 1.0784591 1.2158145 1.4877730 0.8976137 0.8942452 [801] 0.7232144 1.6174230 0.8356251 1.2269545 1.5943899 1.7901508 0.9139183 1.2788182 [809] 0.6548575 1.0951896 1.2438860 1.2577716 1.0847958 0.7748141 0.9343389 1.2166194 [817] 1.2488675 1.4325804 1.1017457 1.2322249 1.2937197 0.9083477 0.8568408 1.2953291 [825] 1.3942516 1.4329445 0.9759928 0.9686806 1.1847879 1.1587197 1.0422539 1.3491388 [833] 1.0455122 0.9950813 0.8574708 0.7266451 0.4840801 1.1419342 0.9147633 1.2666787 [841] 0.5038670 1.1600358 0.6211254 0.9853673 1.5302166 1.5166395 0.7643040 0.7763888 [849] 1.5637569 0.7311832 1.0214453 0.7782809 1.0798627 0.9885680 1.3758187 1.0442081 [857] 1.2087186 0.9723205 1.5263603 1.7749692 1.4054425 0.2929259 1.1921241 1.3165523 [865] 0.8608230 1.2494763 1.1233349 1.1556149 0.9494448 0.9867714 1.3515372 1.8010708 [873] 1.4315911 1.9217633 1.6963755 1.3884189 0.8390164 1.0862745 1.1363216 1.0742549 [881] 1.0756769 0.9633683 1.2342443 0.8375643 1.5691265 1.2436118 1.5439945 0.5788142 [889] 1.2465572 0.7108082 0.7623006 0.6641609 1.1632840 1.0202232 1.0466293 1.3569105 [897] 1.2806858 1.5351610 0.2647251 0.9822875 1.4055886 1.2667593 1.6250036 0.2471722 [905] 0.9054815 1.4612098 1.1870253 0.7930448 1.1971517 0.9809554 0.7736964 1.4442581 [913] 1.2857693 1.4769917 0.7481013 1.6846935 0.8899082 1.0976217 0.8799863 0.4368026 [921] 0.5773471 0.9323268 0.9559382 1.1428471 0.4795261 0.9274134 0.9429120 1.4250533 [929] 1.1500366 1.1380509 1.3432753 1.6506144 9.1067729 1.6860776 1.7314868 0.5321686 [937] 0.5591202 1.1538210 1.1422847 0.7589459 > plot(1:940, y, xlim = c(0, 940), xlab = "样本点", ylab = "欧氏距离") Warning message: In grepl("\n", lines, fixed = TRUE) : input string 1 is invalid in this locale > points(which(y > 2.5), y[which(y > 2.5)], pch = 19, col = "red") > which(y > 2.5) [1] 30 39 226 339 484 525 654 670 933 > setwd("E:/code/dm_R") > Data = read.csv("./chapter6/model.csv", header = TRUE) Error in file(file, "rt") : cannot open the connection In addition: Warning message: In file(file, "rt") : cannot open file './chapter6/model.csv': No such file or directory > setwd("E:/code/dm_R/") > Data = read.csv("./chapter6/model.csv", header = TRUE) Error in file(file, "rt") : cannot open the connection In addition: Warning message: In file(file, "rt") : cannot open file './chapter6/model.csv': No such file or directory > Data = read.csv("./chapter6/example/model.csv", header = TRUE) > colnames(Data) <- c("time", "userid", "ele_ind", "loss_ind", "alarm_ind", "class") > View(Data) > set.seed(1234) > ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.8, 0.2)) > ind [1] 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 [45] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 [89] 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1 [133] 1 1 2 1 2 1 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 [177] 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 2 1 2 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 [221] 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 [265] 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 > trainData <- Data[ind == 1,]#训练集 > testData<- Data[ind == 2,]#测试集 > View(trainData) > write.csv(trainData, "./chapter6/train.csv", row.names = FALSE) > write.csv(testData, "./chapter6/test.csv", row.names = FALSE) > trainData <- transform(trainData, class = as.factor(class)) > View(trainData) > str(trainData) 'data.frame': 240 obs. of 6 variables: $ time : Factor w/ 19 levels "2014年9月10日",..: 16 11 8 5 4 13 11 10 19 9 ... $ userid : num 9.9e+09 9.9e+09 9.9e+09 9.9e+09 9.9e+09 ... $ ele_ind : int 4 4 2 9 2 5 3 3 4 10 ... $ loss_ind : num 1 0 1 0 0 0 1 0 1 1 ... $ alarm_ind: int 1 4 1 0 0 2 3 0 0 2 ... $ class : Factor w/ 2 levels "0","1": 2 2 2 1 1 2 2 1 1 2 ... > library(nnet) > nnet.model <- nnet(class~ele_ind + loss_ind + alarm_ind, trainData, size = 10, decay = 0.05) # weights: 51 initial value 186.182167 iter 10 value 77.276797 iter 20 value 55.683287 iter 30 value 51.056399 iter 40 value 48.988954 iter 50 value 48.110299 iter 60 value 47.880343 iter 70 value 47.829561 iter 80 value 47.809978 iter 90 value 47.790313 iter 100 value 47.784068 final value 47.784068 stopped after 100 iterations
> summary(nnet.model) a 3-10-1 network with 51 weights options were - entropy fitting decay=0.05 b->h1 i1->h1 i2->h1 i3->h1 0.82 -0.30 -0.68 -0.17 b->h2 i1->h2 i2->h2 i3->h2 -1.50 -1.14 1.13 3.02 b->h3 i1->h3 i2->h3 i3->h3 0.74 -0.33 -0.81 -0.11 b->h4 i1->h4 i2->h4 i3->h4 2.13 -0.12 -0.62 -0.62 b->h5 i1->h5 i2->h5 i3->h5 1.99 -0.11 -0.61 -0.61 b->h6 i1->h6 i2->h6 i3->h6 -1.23 0.03 0.71 0.49 b->h7 i1->h7 i2->h7 i3->h7 -1.28 0.03 0.73 0.50 b->h8 i1->h8 i2->h8 i3->h8 -2.28 0.15 0.50 0.67 b->h9 i1->h9 i2->h9 i3->h9 0.83 -0.33 -0.69 -0.14 b->h10 i1->h10 i2->h10 i3->h10 -2.80 0.19 0.44 0.79 b->o h1->o h2->o h3->o h4->o h5->o h6->o h7->o h8->o h9->o h10->o -0.11 -1.51 -3.79 -1.53 -2.59 -2.52 1.84 1.93 2.71 -1.52 3.15
#建立混淆矩阵
> confusion = table(trainData$class, predict(nnet.model, trainData, type = "class")) > confusion 0 1 0 202 3 1 10 25
> accuracy = sum(diag(confusion)) * 100/sum(confusion)#计算准确率 > accuracy [1] 94.58333
write.csv(output_nnet.trainData,"./output_nnet.trainData.csv", row.names = FALSE)
#构建cart决策树模型
library(tree)
#利用tree建立cart决策树
tree.model <- tree(class~ele_ind + loss_ind + alarm_ind, trainData)
summary(tree.model)
Classification tree: tree(formula = class ~ ele_ind + loss_ind + alarm_ind, data = trainData) Number of terminal nodes: 11 Residual mean deviance: 0.3757 = 86.04 / 229 Misclassification error rate: 0.08333 = 20 / 240
#画决策树
plot(tree.model);text(tree.model)
> confusion = table(trainData$class, predict(tree.model, trainData, type = "class")) > confusion 0 1 0 193 12 1 8 27 > accuracy = sum(diag(confusion)) * 100/sum(confusion) > accuracy [1] 91.66667

#ROC曲线
library(ROCR)
#画出神经网络模型的ROC曲线
nnet.pred <- prediction(predict(nnet.model, testData), testData$class)
nnet.perf <- performance(nnet.pred, "tpr", "fpr")
plot(nnet.perf)
#画出决策树模型的ROC曲线
tree.pred <- prediction(predict(tree.model, testData)[,2], testData$class)
tree.perf <- performance(tree.pred, "tpr", "fpr")
plot(tree.perf)



0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有