MOS管饱和导通压降时电压控制过程分析详解-KIAMOS管

标签:
mos管饱和导通压降 |
分类: MOS管 |
MOS管饱和导通压降
金属-氧化层半导体场效晶体管,简称金氧半场效晶体管是一种可以广泛使用在模拟电路与数字电路的场效晶体管。MOSFET依照其“通道”的极性不同,可分为“N型”与“P型”的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOSFET、PMOSFET、等。
1、MOS管导通过程分析
MOS管和三极管的特性曲线分别如图1和图2所示,它们各自区间的命名有所不同,其中MOS管的饱和区也称为恒流区、放大区。
其中一个主要的不同点在于MOS管有个可变电阻区,而三极管则是饱和区,没有可变电阻区的说法。
从图中也能明显看出,MOS管在可变电阻区内,Vgs一定时,Id和Vds近似为线性关系,不同Vgs值对应不同的曲线斜率,即漏极D和源极S之间的电阻值Rds受控于Vgs;而三极管在饱和区内,不同Ib值的曲线都重合在一起,即曲线斜率相同,阻值相同。
(图 1)
MOS管导通过程中的各电压电流曲线如图3所示,其中Vgs曲线有著名(臭名昭著)的米勒平台,即Vgs在某段时间(t3-t2)内保持不变。
(图
3 )
我们知道MOS管是压控器件,不同于三极管是流控器件,但是实际上MOS管在从关断到导通的过程也是需要电流(电荷)的,原因是因为MOS管各极之间存在寄生电容Cgd,Cgs和Cds,如图4所示。
MOS管导通条件是Vgs电压至少达到阈值电压Vgs(th),其通过栅极电荷对Cgs电容充电实现,当MOS管完全导通后就不需要提供电流了,即压控的意思。
这三个寄生电容参数值在MOS管的规格书中一般是以Ciss,Coss和Crss形式给出,其对应关系为:Cgd=Crss;Cds=Coss-Crss;Cgs=Ciss-Crss。
在MOS管的规格书上一般还有如图5所示的栅极充电曲线,其可以很好地解释为何Vgs电压会有米勒平台。
Vgs一开始随着栅极电荷的增加而增加,但是当Vgs增加到米勒平台电压大小Vp时,即使栅极电荷继续增加,Vgs也保持不变,因为增加的栅极电荷被用来给Cgd电容进行充电。
因此,MOS管会有对应的Qgs,Qgd和Qg电荷参数,如图6所示。
在MOS管截止时,漏极电压对Cgd充电,Cgd的电压极性是上正下负;
当MOS管进入米勒平台后,大部分的栅极电荷用来对Cgd进行充电,但是极性与漏极充电相反,即下正上负,因此也可理解为对Cgd反向放电,最终使得Vgd电压由负变正,结束米勒平台进入可变电阻区。
米勒平台时间内,Vds开始下降,米勒平台的持续时间即为Vds电压从最大值下降到最小值的时间。由此可见米勒平台时间与电容Cgd大小成正比,在通信设备行业中-48V电源的缓启动电路经常在MOS管栅漏极间并联一个较大的电容,以延长米勒平台时间来达到电压缓启动的目的。
米勒平台电压的大小可以近似地通过以下公式进行估算,Id=gfs(Vp-Vgs(th)),通过规格书可以得到阈值电压Vgs(th)和跨导gfs,根据电路参数可以得到漏极电流Id,因此,可以近似推算出米勒平台电压Vp。但是需要注意的是跨导gfs并不是一个常数,规格书中给出的数值都是基于一定的Vds和Id条件下得到的。此外,还有另外一种估算方法Id=K(Vp-Vgs(th))2,根据规格书中的参数计算出常数K,然后计算得到Vp。
了解了MOS管的米勒平台后,我们可以分析一下图3所示导通过程中MOS管电压电流的变化曲线。
以常见的MOS管开关电路为例,在t0~t1时间段内,Vgs小于阈值电压Vgs(th)时,MOS管处于截止区关断,漏极电流Id=0,漏源极电压差Vds为输入电压Vin。
在t1~t2时间段内,随着Vgs从阈值电压Vgs(th)逐渐增大至米勒平台电压Vp,电流Id从0开始逐渐增大至最大值,MOS管开始导通,并进入恒流区(饱和区)。
此时Vds仍旧维持不变,但是实际电路中可能会由于各种杂散寄生电感等因素的影响(Ldi/dt产生压降),也会产生一部分压降损失,导致实际的Vds会略微下降。同三极管类似,区内具有相似的放大特性,其公式为:Id=gfsVgs,gfs为MOS管的跨导,可从规格书中得到。
在t2~
t3时间段内,当Id逐渐增大至最大值(由电路参数决定)时,MOS管开始进入米勒平台,由于电流Id已经达到最大值保持不变,所以Vgs=Id/gfs亦保持不变,即从公式角度也可以解释米勒平台。
在t2~t3时间段内,Vds开始以一定斜率下降。但是实际下降的斜率在整个时间段内并非一直保持不变。因为MOS管的Cgd电容在这个过程中是变化的,一开始Cgd较小,之后变大,所以实际的VDS曲线斜率会稍有变化,即一开始Cgd电容小,电压下降较快,之后Cgd电容较大,电压下降较慢,Cgd电容值的变化曲线如图7所示。
(图
7)
在t3之后,MOS管进入可变电阻区,米勒平台结束,Vgs电压在栅极电荷的驱动下继续升高至最大值,Vds则电压下降至最低值Rds(on)Id。图3
MOS管导通曲线的简化版如图8所示,分析问题时图8已经足够使用。MOS管关断时的分析过程相反,其变化曲线如图9所示。
t1和t2的时间可以根据RC充放电原理进行近似计算,t1=RgCissln(Vgs/(Vgs-Vgs(th))),t2=
RgCiss*ln(Vgs/(Vgs-Vp)),其中Vgs为栅极驱动电压大小,Rg为栅极驱动电阻。t2值近似于规格书中的参数延时导通时间td(on)。
米勒平台的持续时间tp可以通过以下公式近似计算:由于该时间段内Vp保持不变,因此栅极驱动电流大小Ig=(Vgs-Vp)/Rg,tp=Qgd/Ig。tp=t3-t2,近似于规格书中的参数上升时间tr。
MOS管导通压降多大
如图一个用于信号控制的小功率N沟道MOS管2N7000,当Rds(on)是MOS管导通时,D极和S极之间的内生电阻,它的存在会产生压降,所以越小越好。D极与S极间电流Id最大时完全导通。在图中可以看到Vgs=10v完全导通,电阻Rds=5欧左右,电流Id=500mA(最大,完全导通),产生压降Vds=2.5v。而Vgs=4.5v时,Id=75mA(不是最大,没完全导通),Rds=5.3欧左右,虽然没完全导通,但产生的压降Vds=0.4v最小,比Vgs=10v产生的压降小得多。对于信号控制(控制DS极导通接地实现高低平)来说只要电压,不需要电流(为什么?这里是信号和电源的区别,基础很重要,这里不做解释,不懂的请先恶补一下基础),所以只要求MOS管导通时产生的压降越小越好,可以使D极的电压直接被拉为接近0v,因此首选Vgs=4.5v左右,而不选10v。有些用于信号控制的MOS管如2N7002K,Vgs为10V和4.5V时产生的压降差不多,MOS管驱动电路,可以根据情况选择10v或者4.5v左右的导通电压。因此对信号控制来说,原则上是选择导通时产生的压降越小越好。
那么对于使用在电源控制方面,既需要电压也需要电流的大功率MOS管来说,就需要完全导通,那么导通电压是多少呢?我们再来看一个大功率N沟道MOS管AO1428A,如下图
从图中可以看出Vgs为10v和4.5v时,Id为12.4A,都达到最大,都可完全导通。但10v比4.5v的导通电阻小,产生压降小(大约差0.7v),并且10v的开关速度快,损失的能量少,开关效率高,所以首选10v。至于P沟道MOS管,跟N沟道的差不多,这时不做解析了,它用在信号控制方面的很少,主要是用在电源控制如AO4425,G极电压必须低于S极10V以上,也就是Vgs《-10v,才能完全导通(Rds=
9 mΩ左右)。如下图
总结:信号控制使用的MOS管,只要电压,不需要电流,要求导通时产生的压降Vds最小,首选Vgs=4.5v左右,对信号控制来说,原则上是选择导通时产生的压降越小越好。电源控制使用的MOS管,既要电压也要电流,要求完全导通,要求Id最大,产生的压降Vds最小,首选Vgs=10v左右。
如何把Mos管导通时电压降控制在最小?
在用FDS6890A型号N-mos,用作开关,漏极加10伏电压,栅极加0到5伏方波控制导通闭合,但是测量源极电压时候只有0到8伏的方波输出。
怎么提高Mos管效率,或者是用一些高级点的电路?
首先要了解MOS管的工作原理。MOS管与一般晶体三极管是不同的。它是电压控制元件,它是栅极电压控制的是S-D极间的体电阻。在栅极施加不同的电压,源-漏极之间就会有电阻的变化,这就是MOS管的工作原理。栅极电压对应在器件S-D极的电阻变化曲线可以查器件手册。根据MOS管的这个特性,既可以选择将MOS管作放大器工作,也可以选择作为开关工作。
根据以上原理分析,在你的问题中,如果要使MOS管作在开关状态,就要对栅极施加足够的电压,它才能充分起到开关作用。你在栅极施加的电压只有5V(对于单管而言我认为栅极电压低了,一般应该在12V左右比较好),这个电压下MOS管的夹断电阻依然比较大,所以输出只有8V。
导通与截止由栅源电压来控制,对于增强型场效应管来说,N沟道的管子加正向电压即导通,P沟道的管子则加反向电压。一般2V~4V就可以了。但是,场效应管分为增强型(常开型)和耗尽型(常闭型),增强型的管子是需要加电压才能导通的,而耗尽型管子本来就处于导通状态,加栅源电压是为了使其截止。
开关只有两种状态通和断,三极管和场效应管工作有三种状态:
1、截止;
2、线性放大;
3、饱和(基极电流继续增加而集电极电流不再增加);
使晶体管只工作在1和3状态的电路称之为开关电路,一般以晶体管截止,集电极不吸收电流表示关;以晶体管饱和,发射极和集电极之间的电压差接近于0V时表示开。开关电路用于数字电路时,输出电位接近0V时表示0,输出电位接近电源电压时表示1。所以数字集成电路内部的晶体管都工作在开关状态。
场效应管按沟道分可分为N沟道和P沟道管(在符号图中可看到中间的箭头方向不一样)。
按材料分可分为结型管和绝缘栅型管,绝缘栅型又分为耗尽型和增强型,一般主板上大多是绝缘栅型管简称MOS管,并且大多采用增强型的N沟道,其次是增强型的P沟道,结型管和耗尽型管几乎不用。场效应晶体管。由多数载流子参与导电,也称为单极型晶体管。它属于电压控制型半导体器件。场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电,被称之为双极型器件。有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。