加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

【李玮专栏】《数学广角——数与形》微课教学设计

(2018-08-16 18:19:56)
分类: 团队成员专栏

人教版六年级上册第八单元

《数学广角——数与形》微课教学设计

渭南市华州区毓秀小学  李玮

设计说明:

数与形之间密不可分,它们相互转化,相辅相成。在课堂教学中适当地应用数形结合思想,把握好数形结合的度,就可以把问题化难为易,化繁为简。在引进新知、建构概念、解决问题时,还可以激发学生的学习兴趣,有利于发展学生的想象力,提高学生的思维能力。

1.重视数与形之间的联系,找到解题规律。 数形结合思想是小学阶段最重要的一种数学思想,在课堂教学中,重视数与形之间的联系,有助于学生抽象能力的提升。因此,教学伊始,从观察、分析例1中图与算式的关系入手,引导学生探究算式左边的加数和与大正方形中每列(或每行)小正方形个数的关系,发现数与形之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。

2.借助数与形之间的关系解决相关问题。 从观察抽象的算式特点开始,先通过简单的计算找到规律,再借助多种几何图形直观验证计算过程及结果,使学生在初步了解、运用数形结合思想方法的同时,体验到数学的极限思想。

课前准备:

教师准备 PPT课件

教学过程:

    一、问题导入:

1+3+5+...+95+97+99=(   

  设疑:怎样快速计算出这个算式的结果?

二、探究新知:

1.教学例1。

(1)课件出示例题。

观察图形,把算式补充完整。  

1=(  )   

1+3=(  ) 

1+3+5=(  )

1+3+5+7=(  )

2观察图形与算式,总结规律。

 观察、讨论。 仔细观察,看一看上面的图形和算式左边的加数有什么关系。

 汇报规律。 [规律一:算式左边加数的个数与对应的大正方形中每列(或每行)小正方形的个数相同。 规律二:算式左边加数的和是大正方形左下角的小正方形和其他“┐”形所包含的小正方形的个数和。 规律三:算式左边加数的和正好等于大正方形中每列(或每行)小正方形个数的平方。]

总结:即从1开始,几个连续奇数相加的和即是几的平方。

3)运用规律解决问题。

  1+3+5+7+9+11+13=(  )

                          =9²

(1+3+5+7+9+11+13=72)

 1+3+5+...+95+97+99=(   

    2.交流对用数形结合的方法解决问题的感悟。

 (数形结合的方法可以把抽象的代数问题形象化,使其直观、简洁、易懂)

设计意图:教学时,观察、讨论相结合,引导学生借助不同的几何图形解决例题中的代数问题,使学生在理解、掌握例题中数与形关系的基础上,充分体会用数形结合方法解决问题的直观性,感悟数学的极限思想。

三、巩固练习

1. 1+3+5+7+5+3+1=(   

可以看成两部分:1+3+5+7=4²

                5+3+1=3²

                4²+3²=25

2.根据上面结论算一算:1+3+5+7+9+11+13+11+9+7+5+3+1=(  

原式=7²+6²=85

四、教师小结

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有