小数乘法测试题错题分析
(2019-09-30 18:08:40)小数乘法测试题错题分析
错例一
【错例来源】教材第6页做一做1.计算下面各题。
【错题再现】
错因1 小数乘法竖式末尾没对齐,小数点又受加法影响 忘记加进位 小数乘法竖式末尾没对齐,运算出错现象。
错因2 只数一个因数的小数点 积的小数位不够时忘了点小数点先去0再点小数点 现象
【题意解读】
积的小数位数不够时,要先在积的前面用0补足数位,再点上小数点,最后写上整数部分的0。
【情况说明】
全班有10人做错,其中小数末尾没对齐而错有3人;小数数位不够需要0补足而没补做错有4人;其他做错的有3人。出错的学生基本上都是平时学习数学比较困难的学生,这些学生的特点是计算能力薄弱,计算不专心,注意范围较为狭窄。也有3位学生对整数乘法计算基本都会做,就是不明白为什么要在积的前面用0补足,对乘法的算理不懂。
【原因分析】
1.小数乘法竖式末尾没对齐:是学生受小数加减法竖式计算负迁移影响,“小数点对齐”“数位对齐”早已深入学生的认识,其次学生不理解小数乘法的算理。计算小数乘法时,是根据积的变化规律,把因数相应的扩大,使小数转化为整数,按整数乘法计算,最后再处理积中的小数点问题。
2.小数乘法中“积的小数位数”是学习的难点。学生虽然理解了小数乘整数的算理,但是在具体计算时关于0的处理还是会出现偏差:因数末尾的0没有先落下来就点小数点;在积中先把0划去,再点小数点;点小数点的方向错误,从左边数出位数再点小数点等。
3.个别学生学习习惯差书写习惯差,字写潦草,题目抄错(少抄了一个0),竖式书写数位没有对齐,计算不细心专心。
【教学提示】 提高学生的计算能力,应“循理入法,以理驭法”。主要靠理解小数乘法原理而不是靠死记硬背来保证正确性。
1.根据学生的特点,从实际出发,将小数乘法计算中的难点进行分解,降低学习的坡度,采用“架阶梯,小步走”的方式,促进学生理解算理、掌握算法,从而形成相应的技能。
2.注重显现思维过程,教学中不让学生机械的记忆计算法则,而是让学生经历探索算法的形成的过程,明确小数乘法的算理。
3.充分利用错题进行辨析,在计算技能教学中,错题也是一种宝贵的学习资源。通过出示学生的错题资源,让学生在找错、改错中反思问题所在,剖析错误根源,帮助学生防微杜渐,提高笔算乘法的计算水平。
【针对练习】
第1-2两题是加强对小数算法掌握的练习;3-4是沟通小数乘法算理的理解
下面各式的积有几位小数,就在括号里填几0.47×14( )6.18×0.76( )1.23×0.07( )0.46×1.4( ) 2.给下面题和积点上小数点3.根据第一列的积,写出其他各列的积 因数 32 32 3.2 32 32 0.32 3.2 因数 15 150 15 1.5 0.15 15 0.15 积 480 4.算一算,填一填
错例二 【错例来源】课堂作业本第8页练习三第二题:下面各题怎样简便就怎样算。
【题意解读】整数乘法运算定律推广到小数。
【情况说明】第一题出题最多有4位学生,其余5题,解题思路错误相同每题有2位学生。平时成绩良好的学生出错误率较高的是乘法分配与乘法结合混淆;成绩一般的学生出错率除了两种分配律混淆外还出错乘法分配律(只与括号内一个数相乘,再加另一个数)。成绩较差的学生出错就五花八门,包括书写不端正,将数字看错,计算错误,没按简便要求计算,不会运用乘法定律等,其中计算错误比较多。
【原因分析】
1.学习乘法分配律和结合律时,教材只编排一个课时,通过让学生观察几组算式,发现规律,得出结论整数乘法运算定律对小数乘法同样适用。在一节时学习了三个乘法定律,多数学生容易陷入模仿练习,导致所学的、识记的只是运算定律的形式,而没有真正理解运算定律的内在意义。2.由于乘法结合律与乘法分配律在表现形式上十分相近,致使一些学生容易造成公式记忆上的混淆。这说明学生对这两条运算定律的理解还不够透彻。3.未能理解规律内涵。教师在教学乘法分配律时,将侧重点放到观察算式的外在形式,淡化内在算理的阐释,学生只会机械地记忆规律,不能理解规律的内涵本质。又由于乘法分配律形式变化比较大,因为学生缺乏对乘法分配律内在算理的理解,所以乘法分配律一变式,学生就摸不着头脑了。
【教学提示】
1.采用数形结合来理解乘法分配律的算理,如图:求大长方形的面积2.5×(4+0.4)=2.5×4+0.4错在哪里? 让学生对照图形进行辨析,问题就迎刃而解。以形辅数,由数想形,使抽象的数学定律直观化、形象化、简单化,为具体形象思维向抽象逻辑思维过渡搭建了桥梁,因而根源上找出这些题的错因,让学生自我发现、自我纠正。
2.促进意义建构。在教学乘法分配律时,不能只重结果,忽略过程,要给学生留出自主探索的空间。

加载中…