加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

《一元二次方程的根的判别式》教学设计

(2015-10-27 20:57:34)
标签:

数学

教学设计

分类: 学科教学

〖教学目标〗

知识与技能:了解一元二次方程根的判别式,理解为什么能根据它判断方程根的情况;能用一元二次方程根的判别式判别方程是否有实数根以及两个实数根是否相等。

过程与方法:经历一元二次方程根的判别式的意义及作用的探究过程,体会分类讨论和转化的思想方法,感受数学思想的严密性与方法的灵活性。 

情感态度与价值观:通过对根的判别式的意义及作用的探究,培养对科学的探索精神和严谨的治学态度。

〖重点难点〗

本节内容的教学重点是用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等;教学难点是弄懂为什么可以用判别式判别一元二次方程根的情况;突破难点的关键在于结合平方根的性质理解求根公式。

〖教学准备〗

教具准备:多媒体课件。

学生准备:复习一元二次方程的解法,预习本节内容。

〖教学流程〗

一、创设情境,提出问题

1、你能说出我们共学过哪几种解一元二次方程的方法吗?

2、能力展示:分组比赛用公式法解方程

1x2+4=4x ;(2x2+2x=3 ;(3x2-x+2=0

(待学生做完后,教师点评。(1x1= x2 = 2 ;(2x 1 = 1x2 = -3 ;(3)无实数根。)

3、发现问题

观察上面三个方程的根的情况,你有什么发现?

(1)方程根的情况?  2)与b2-4ac的值,有什么关系?

4、提出问题

对于一元二次方程ax2+bx+c=0(a0),何时有两个相等的实数根?何时有两个不相等的实数根?它何时没有实数根?方程的根的情况是由什么决定的?

二、探究新知

1、一元二次方程的根的判别式

活动1 学生自学,初步感悟

请学生带着上面的问题,自学第31页课文至倒数第四行,并注意分类讨论的思想方法的使用。

教师巡视,并注意收集问题,为下一步集中释疑做准备。

活动2 合作交流,深入探究

请学生结合自己的理解,就上述问题的答案在小组内进行讨论、探究,然后教师组织全班进行交流,关键让学生讲清每个结论的理由。

活动3 师生合作,归纳提升(屏幕显示):

由上面的讨论可见,一元二次方程ax2+bx+c=0(a0)的根的情况由b2-4ac来决定。因此,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a0)的根的判别式。通常用符号“Δ”(希腊字母)来表示,读做“得尔塔”,即Δ=b2-4ac。在今后的数学学习中还会遇到:用一个简单的符号来表示一个数学式子的情况,同学们要逐渐适应这一点,它体现了数学的简洁美。(书写标题)

2、一元二次方程的根的判别方法

思考:你能说出一元二次方程ax2+bx+c=0(a0)的根的情况具体有哪几种,又是如何判别的吗?

学生思考,师生共同得出:

定理 一般地,一元二次方程ax2+bx+c=0(a0)

当Δ>0时,有两个不相等的实数根;

当Δ=0时,有两个相等的实数根;

当Δ<0时,没有实数根。

这个结论告诉我们,只要算出一元二次方程ax2+bx+c=0(a0)的根的判别式的值,就可以由它的符号直接判别方程根的情况。

活动4 应用迁移,发展能力

    例题1 不解方程,判别下列方程根的情况:

   15x2-3x=2225y2+4=20y32x2+ 《一元二次方程的根的判别式》教学设计 x+1=0

本例先让学生思考,分析解题思路,然后请学生口述第(1)小题的解法,教师板书,以进一步明确思路,强调解题方法及格式。

解 (1)原方程可变形为

5x2-3x-2=0

因为Δ=(-32- 4×5×(-2)>0

所以,原方程有两个不相等的实数根。

请学生回顾上面的解题过程,总结判别一元二次方程的根的情况的一般步骤:

一化(将一元二次方程化为一般形式);

二算(确定abc的值,算出Δ的值);

三判断(根据定理判别方程根的情况)。

2)、(3)小题由学生完成。

练习反馈:课本第32页练习1

3、逆定理

活动5 逆向思考,拓展延伸

上面的定理中共有三个命题,你能分别说出它们的逆命题吗?(屏幕显示定理)

学生思考、交流并回答,教师指出:这三个命题也是真命题,从而得到:

逆定理   对于一元二次方程ax2+bx+c=0(a0)

当方程有两个不相等的实数根时,Δ>0

当方程有两个相等的实数根时,Δ=0

当方程没有实数根时,Δ<0

例题2 已知关于x的方程x23x + k = 0,问k取何值时,这个方程有两个相等的实数根?

学生思考、分析,并与同伴交流与讨论,然后请同学说出自己的想法。

解:∵方程有两个相等的实数根,  

 ∴Δ= 0

(3)24k = 0, 解得k= 《一元二次方程的根的判别式》教学设计

    k= 《一元二次方程的根的判别式》教学设计 时,方程有两个相等的实数根。

变式:已知关于x的方程x23x + k = 0,问k取何值时,这个方程有两个实数根?

学生思考、分析,并与同伴交流与讨论,师生共同得到正确解题思路。

解:∵方程有两个实数根,  

 ∴Δ≥0

(3)24k0, 解得k 《一元二次方程的根的判别式》教学设计

k 《一元二次方程的根的判别式》教学设计 时,方程有两个相等的实数根。

三、当堂检测

1.一元二次方程3x2-2x+1=0的根的判别式的值为______ ,所以方程根的情况是_______________.

2.若一元二次方程x2-ax+1=0的两实根相等,则a的值是(    

A.a=0    B.a =2a =-2    C.a =2    D.a =2a =0

3. 若关于x的一元二次方程(m-1)x2-2mx+m=0有两个实数根,则m的取值范围是 (      

A .m        B . m   C . m0m  D . m0m1

四、小结与评价

1、通过本节课的学习,你有哪些收获?

本节课的主要内容:

1)、一元二次方程根的判别式的意义;

2)、由根的判别式的符号判断一元二次方程根的情况的定理和逆定理

2、本节课你对自己的表现满意吗?对同学呢?能给老师一个评价吗?

五、作业设计

课本第33页习题18.3

必做题:第1,3题;

选做题:第2,4,5.

板书设计:

一元二次方程根的判别式

1、定义              例题解(1            学生板演处

2、定理

逆定理

3、一化二算三判断          

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有