加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

将二氧化碳转化为一氧化碳和氧气

(2019-12-01 21:58:45)
分类: 科学,物理、化学
                   将二氧化碳转化为一氧化碳和氧气

我们都知道,空气中的二氧化碳植物擅长把二氧化碳从空气中分离出来。但速度很慢,科学家希望能够加快这一从大气中去除温室气体的过程。
美国研究人员通过开发出一种能够将二氧化碳转化为一氧化碳和氧气的多孔材料,新材料不但能够清洁我们的天空,还可能成为制造源自可再生能源的燃料的新起点。
几十年来,化学家们一直试图用二氧化碳做一些有意义的事情。但二氧化碳是一种非常稳定且不易起化学反应的分子。为了将其分离为一氧化碳和氧气,研究人员不得不添加能量,通常是电力。但人们现在已经不这么做了,因为精炼石油制造燃料要便宜得多。然而一些催化剂(能够加速化学反应的物质)却能够使这一过程变得更为廉价。
一种有希望的催化剂是在中心具有一个钴原子的环形有机分子,即所谓的卟啉。当向溶解了一些二氧化碳并安装有两个电极的电解液中添加卟啉后,这种温室气体被分解为一氧化碳和氧气。但这一过程只有在卟啉被溶解于一种有环境问题的有机溶剂中才会发生。并且还有另一个问题:卟啉往往会随着时间的推移而凝结成块,从而破坏它们的电子运送能力。
为了解决这一问题,由加利福尼亚大学伯克利分校化学家Omar Yaghi和Chris Chang率领的研究人员找到了一种解决方法,能够将卟啉与名为共价有机框架(COF)的一种多孔固体材料结合在一起。
Yaghi与他的团队开发出了各种各样的COF,作为过滤器分离不同的气体。但为了向着制造可再生能源迈出第一步,研究人员想要看看他们的钴COF能否分离二氧化碳。卟啉似乎是一个自然的选择,因为它不仅擅长向二氧化碳运送电子,而且也可以导电。
从理论上讲,卟啉COF的多孔性使得二氧化碳能够穿透并与卟啉中心的钴原子进行催化反应。
在合成了新的COF后,Yaghi、Chang和他们的同事将一层电极放在这种多孔材料的顶端。由于他们的催化剂已经接触到电极,因此就不再需要分子卟啉催化剂所需的有机溶剂,转而用一种简单的水基电解液代替。当研究人员接通电流后,他们发现卟啉COF不但能够将二氧化碳分解为一氧化碳和氧气,而且比分子版本做得更好。
研究人员随后又向卟啉COF中加入了一些铜,从而增加了二氧化碳分子与钴原子实际接触以及被分解的可能性。
伯克利研究团队日前在《科学》杂志网络版上报告说,这种双金属的COF分离二氧化碳分子的能力是自由移动的钴卟啉分子的60倍。COF同时被证明是高效的——能够利用90%的电子将二氧化碳分子分解为一氧化碳。而且这种催化剂极具活性,每小时能够分解约24万个二氧化碳分子,是只有钴的COF的25倍。所有这些使得这种新材料成为迄今为止最棒的二氧化碳分离催化剂。
伊利诺伊大学香槟分校化学家Paul Kenis表示:“这真是一项非常出色的工作。”他强调有许多研究团队都在尝试利用多孔电极材料改进他们的二氧化碳—氧化碳转化策略。
Kenis和Yaghi表示,最终,这些分解出的一氧化碳可以同氢相结合,从而生成来自可再生能源(例如风能和太阳能)的碳氢燃料。这种做法如今在经济上还不可行,因为精炼石油成本更低。但如果一个国家只想利用可再生能源制造燃料,而不想向空气中排放因燃烧化石燃料产生的二氧化碳,那么这样的新材料将会派上用场。

一种廉价的新型化学催化剂将二氧化碳分解为一氧化碳和氧气

新型催化剂可高效分解二氧化碳

长期以来,科学家们一直梦想模仿光合作用,用太阳光的能量,从二氧化碳和水中攫取烃燃料。据《科学》杂志7日报道,瑞士联邦理工学院的化学家团队,能让一种廉价的新型化学催化剂以创纪录的效率工作,使之高效利用太阳能电池的电力,将二氧化碳分解为富含能量的一氧化碳和氧气。

报道称,当二氧化碳分解成一氧化碳和氧气时,转化过程开始,一氧化碳可以继续与氢气结合,形成各种碳氢化合物燃料。例如,为每个一氧化碳添加4个氢原子,就可以生成为新能源汽车提供动力的燃料甲醇。

过去20年中,研究人员已经发现了许多催化剂,其中最好的一种,是比较便宜的氧化铜,但迈克尔·格雷泽尔带领的团队偶然发现,用铜和锡氧化物制成的新催化剂,不会像氧化铜催化剂那样分解过多的水,得到的产物也几乎是纯一氧化碳。

据这一发表在本周《自然·能源》上的新进展阐述,为提高催化剂的转化效率,研究团队重新制作了具有很大表面积的氧化铜纳米线电极,并用单一原子厚度的锡层覆盖。研究表明,得到的催化剂能将90%的二氧化碳转化为一氧化碳、氧气和其他副产品,创下新纪录。

业内专家认为,虽然这种转换生产的价格还不足以与化石燃料竞争,但或许有一天,它能引领从太阳、水和二氧化碳中,制取重要的无限量液体燃料的方法,并进一步推动在化学燃料中储存可再生能源的发展。

                                                             (摘自豆瓣、集贤网)      

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有