r语言常用函数apply及subset函数

标签:
r语言大数据分析数据科学家数据挖掘数据分析 |
1、merge函数对数据框的操作,从两个数据框中选择出条件相等的行组合成一个新的数据框
http://www.cda.cn/uploadfile/image/20180107/20180107072340_88128.png
2、subset函数,从某一个数据框中选择出符合某条件的数据或是相关的列
(1)单条件查询
(2)指定显示列
(3)多条件查询
为什么用apply
因为我是一个程序员,所以在最初学习R的时候,当成“又一门编程语言”来学习,但是怎么学都觉得别扭。现在我的看法倾向于,R不是一种通用型的编程语言,而是一种统计领域的软件工具。因此,不能用通用型编程的思维来设计R代码。在Andrew
Lim关于R和Python的对比回答中,R是一种面向数组(array-oriented)的语法,它更像数学,方便科学家将数学公式转化为R代码。而Python是一种通用编程语言,更工程化。在使用R时,要尽量用array的方式思考,避免for循环。不用循环怎么实现迭代呢?这就需要用到apply函数族。它不是一个函数,而是一族功能类似的函数。
概述
apply系列函数的基本作用是对数组(array,可以是多维)或者列表(list)按照元素或元素构成的子集合进行迭代,并将当前元素或子集合作为参数调用某个指定函数。vector是一维的array,dataframe可以看作特殊的list。
这些函数间的关系
作用目标
array
list
其中lapply(...)包括一族函数
lapply
另外vector比较奇怪,vector是一维的array,但是却不全是和array使用相同的函数。在按元素迭代的情况下,使用和list一样的lapply函数;而在按子集合迭代的情况下,tapply和by都能用,只是返回值形式不同。
功能与语法描述
apply
apply(array, margin, FUN, ...)
在array上,沿margin方向,依次调用FUN。返回值为vector。margin表示数组引用的第几维下标(即array[index1,
index2, ...]中的第几个index),1对应为1表示行,2表示列,c(1,2)表示行列。margin=1时,apply(a,
1, sum)等效于下面的操作
a <- array(c(1:24), dim=c(2,3,4))
result=c()
for (i in c(1:dim(a)[1])) {
}
经实测,只能用在二维及以上的array上,不能用在vector上(如果要应用于vector,请使用lapply或sapply)。以matrix为例,如下
> m <- matrix(c(1:10), nrow=2)
> m
[1,]
[2,]
> apply(m, 1, sum)
[1] 25 30
> apply(m, 2, sum)
[1]
tapply
tapply(array, indices, margin, FUN=NULL, ...)
按indices中的值分组,把相同值对应下标的array中的元素形成一个集合,应用到FUN。类似于group by
indices的操作。如果FUN返回的是一个值,tapply返回vector;若FUN返回多个值,tapply返回list。vector或list的长度和indices中不同值的个数相等。
当FUN为NULL的时候,返回一个长度和array中元素个数相等的vector,指示分组的结果,vector中相等的元素所对应的下标属于同一组。例如,返回c(1,
2, 1, 3, 2),
表示根据传入的indices,第1、3个元素作为一组,第2、5个元素作为一组,第4个元素作为一组。
一维array的例子(即vector)
> v <- c(1:5)
> ind <- c('a','a','a','b','b')
> tapply(v, ind)
[1] 1 1 1 2 2
> tapply(v, ind, sum)
a b
6 9
> tapply(v, ind, fivenum)
$a
[1] 1.0 1.5 2.0 2.5 3.0
$b
[1] 4.0 4.0 4.5 5.0 5.0
二维array的例子(即matrix)
> m <- matrix(c(1:10), nrow=2)
> m
[1,]
[2,]
> ind <- matrix(c(rep(1,5),
rep(2,5)), nrow=2)
> ind