加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

二次函数应用之抛物线与等腰三角形、直角三角形

(2014-12-22 10:33:54)
标签:

解析式

抛物线

等腰三角形

坐标

分类: 解题方法
1、如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2-2x-3=0的两根.
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标.

http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_ST/images0.png

【分析】(1)首先解方程得出A,B两点的坐标,进而利用待定系数法求出二次函数解析式即可;
(2)①首先求出AB的直线解析式,以及BO解析式,再利用等腰三角形的性质得出当OC=OP时,当OP=PC时,点P在线段OC的中垂线上,当OC=PC时分别求出x的值即可;
②利用S△BOD=S△ODQ+S△BDQ得出关于x的二次函数,进而得出最值即可.


解:(1)解方程x2-2x-3=0,
得 x1=3,x2=-1.
∵m<n,
∴m=-1,n=3…(1分)
∴A(-1,-1),B(3,-3).
∵抛物线过原点,设抛物线的解析式为y=ax2+bx(a≠0).
http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/0.png
解得:http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/1.png
∴抛物线的解析式为http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/2.png.…(4分)

(2)①设直线AB的解析式为y=kx+b.
http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/3.png
解得:http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/4.png
∴直线AB的解析式为http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/5.png
∴C点坐标为(0,http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/6.png).…(6分)
∵直线OB过点O(0,0),B(3,-3),
∴直线OB的解析式为y=-x.
∵△OPC为等腰三角形,
∴OC=OP或OP=PC或OC=PC.
设P(x,-x),
(i)当OC=OP时,http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/7.png
解得http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/9.png(舍去).
∴P1http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/11.png).
(ii)当OP=PC时,点P在线段OC的中垂线上,
∴P2http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/13.png).
(iii)当OC=PC时,由http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/14.png
解得http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/15.png,x2=0(舍去).
∴P3http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/17.png).
∴P点坐标为P1http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/images24.png

②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.
设Q(x,-x),D(x,http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/24.png).
S△BOD=S△ODQ+S△BDQ=http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/26.pngDQ•GH,
=http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/27.pngDQ(OG+GH),
=http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/28.png
=http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/29.png
∵0<x<3,
∴当http://img.manfen5.com/res/CZSX/web/STSource/20131103202327224143112/SYS201311032023272241431022_DA/33.png).…(13分)


2、如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).
http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_ST/images0.png
(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是______,请说明理由;
(2)如图2,已知D(http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_ST/0.png,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;
(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A-B-C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?


【分析】(1)按照中心对称图形的定义作图即可,易知四边形OABC为正方形;
(2)已知A、C、D三点的坐标,利用待定系数法求出抛物线的解析式;由直线BC:y=2,代入抛物线解析式解方程求得点E的坐标;
(3)在点P的运动过程中,△AON为等腰三角形的情形有三种,注意不要漏解.充分利用正方形、等腰三角形的性质,容易求得点P运动的路程x.

http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_DA/images0.png 【解析】
(1)设AC的中点为E,连接OE并延长至B,使得BE=OE;连接AC,AB,则△ABC为所求作的△AOC的中心对称图形.
∵A(2,0),C(0,2),∴OA=OC,
∵△ABC是△AOC的中心对称图形,∴AB=OC,BC=OA,
∴OA=AB=BC=OC,
∵∠COA=90°,
∴四边形OABC是正方形;

(2)设经过点A、C、D的抛物线解析式为y=ax2+bx+c,
∵A(2,0),C(0,2),D(http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_DA/0.png,0),
http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_DA/1.png,解得a=-2,b=3,c=2,
∴抛物线的解析式为:y=-2x2+3x+2;
由(1)知,四边形OABC为正方形,∴B(2,2),
∴直线BC的解析式为y=2,
令y=-2x2+3x+2=2,解得x1=0,x2=http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_DA/2.png
∴点E的坐标为(http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_DA/images5.png

(3)在点P的运动过程中,有三种情形使得△AON为等腰三角形,
如图②所示:
①△AON1.此时点P与点B重合,点N1是正方形OABC对角线的交点,且△AON1为等腰直角三角形,
则此时点P运动路程为:x=AB=2;
②△AON2.此时点P位于B-C段上.
∵正方形OABC,OA=2,∴AC=2http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_DA/4.png
∵AN2=OA=2,∴CN2=AC-AN2=2http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_DA/5.png-2.
∵AN2=OA,∴∠AON2=∠AN2O,
∵BC∥OA,∴∠AON2=∠CP2N2,又∠AN2O=∠CN2P2
∴∠CN2P2=∠CP2N2
∴CP2=CN2=2http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_DA/6.png-2.
此时点P运动的路程为:x=AB+BC-CP2=2+2-(2http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_DA/8.png
③△AON3.此时点P到达终点C,P、C、N三点重合,△AON3为等腰直角三角形,
此时点P运动的路程为:x=AB+BC=2+2=4.
综上所述,当x=2,x=6-2http://img.manfen5.com/res/CZSX/web/STSource/20131101192809787329406/SYS201311011928097873294023_DA/9.png或x=4时,△AON为等腰三角形.

3、如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:
①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.

http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_ST/images0.png


【分析】(1)由∠ACB=90°,AC=BC,OA=1,OC=4,可得A(-1,0)B(4,5),然后利用待定系数法即可求得b,c的值;
(2)由直线AB经过点A(-1,0),B(4,5),即可求得直线AB的解析式,又由二次函数y=x2-2x-3,设点E(t,t+1),则可得点F的坐标,则可求得EF的最大值,求得点E的坐标;
(3)①顺次连接点E、B、F、D得四边形EBFD,可求出点F的坐标(http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/1.png),点D的坐标为(1,-4)由S四边形EBFD=S△BEF+S△DEF即可求得;
②过点E作a⊥EF交抛物线于点P,设点P(m,m2-2m-3),可得m2-2m-3=http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/3.png,求得点P的坐标,则可得使△EFP是以EF为直角边的直角三角形的P的坐标.

解:
(1)由已知得:A(-1,0),B(4,5),
∵二次函数y=x2+bx+c的图象经过点A(-1,0),B(4,5),
http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/4.png
解得:b=-2,c=-3;

(2)如图:∵直线AB经过点A(-1,0),B(4,5),
∴直线AB的解析式为:y=x+1,
∵二次函数y=x2-2x-3,
∴设点E(t,t+1),则F(t,t2-2t-3),
∴EF=(t+1)-(t2-2t-3)=-(t-http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/6.png
∴当t=http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/8.png
∴点E的坐标为(http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/10.png);

(3)①如图:顺次连接点E、B、F、D得四边形EBFD.
http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/images11.png
可求出点F的坐标(http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/12.png),点D的坐标为(1,-4)
S四边形EBFD=S△BEF+S△DEF=http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/19.png
②如图:
http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/images21.png
ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2-2m-3)
则有:m2-2m-3=http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/20.png
解得:m1=1+http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/22.png
∴P1(1-http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/26.png),

ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2-2n-3)
则有:n2-2n-3=-http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/27.png
解得:n1=http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/29.png(与点F重合,舍去),
∴P3http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/31.png),
综上所述:所有点P的坐标:P1(1+http://img.manfen5.com/res/CZSX/web/STSource/20131101192711090808027/SYS201311011927110908080022_DA/37.png)能使△EFP组成以EF为直角边的直角三角形.

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有